[R] Regression Overdispersion?
JvanDyne
e283851 at trbvm.com
Sun Feb 1 17:26:19 CET 2015
I am trying to use Poisson regression to model count data with four
explanatory variables: ratio, ordinal, nominal and dichotomous – x1, x2, x3
and x4. After playing around with the input for a bit, I have formed – what
I believe is – a series of badly fitting models probably due to
overdispersion [1] - e.g. model=glm(y ~ x1 +
x2,family=poisson(link=log),data=data1) - and I was looking for some general
guidance/direction/help/approach to correcting this in R.
[1] – I believe this as a. it’s, as I’m sure you’re aware, a possible reason
for poor model fits; b.the following:
tapply(data1$y,data$x2,function(x)c(mean=mean(x),variance=var(x)))
seems to suggest that, whilst variance does appear to be some function of
the mean, there is a consistently large difference between the two
--
View this message in context: http://r.789695.n4.nabble.com/Regression-Overdispersion-tp4702611.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list