[R] Help Interpreting Linear Mixed Model
Thierry Onkelinx
thierry.onkelinx at inbo.be
Mon Apr 27 09:06:19 CEST 2015
Dear Josh,
Is this homework? Because the list has a no homework policy.
Best regards,
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
2015-04-27 2:26 GMT+02:00 Joshua Dixon <joshuamichaeldixon op gmail.com>:
> Hello!
>
> Very new to R (10 days), and I've run the linear mixed model, below.
> Attempting to interpret what it means... What do I need to look for?
> Residuals, correlations of fixed effects?!
>
> How would I look at very specific interactions, such as PREMIER_LEAGUE
> (Level) 18 (AgeGr) GK (Position) mean difference to CHAMPIONSHIP 18 GK?
>
> For reference my data set looks like this:
>
> Id Level AgeGr Position Height Weight BMI YoYo
> 7451 CHAMPIONSHIP 14 M NA 63 NA 80
> 148 PREMIER_LEAGUE 16 D NA 64 NA 80
> 10393 CONFERENCE 10 D NA 36 NA 160
> 10200 CHAMPIONSHIP 10 F NA 46 NA 160
> 1961 LEAGUE_TWO 13 GK NA 67 NA 160
> 10428 CHAMPIONSHIP 10 GK NA 40 NA 160
> 10541 LEAGUE_ONE 10 F NA 25 NA 160
> 10012 CHAMPIONSHIP 10 GK NA 30 NA 160
> 9895 CHAMPIONSHIP 10 D NA 36 NA 160
>
>
> Many thanks in advance for time and help. Really appreciate it.
>
> Josh
>
>
> > summary(lmer(YoYo~AgeGr+Position+(1|Id)))
> Linear mixed model fit by REML ['lmerMod']
> Formula: YoYo ~ AgeGr + Position + (1 | Id)
>
> REML criterion at convergence: 125712.2
>
> Scaled residuals:
> Min 1Q Median 3Q Max
> -3.4407 -0.5288 -0.0874 0.4531 4.8242
>
> Random effects:
> Groups Name Variance Std.Dev.
> Id (Intercept) 15300 123.7
> Residual 16530 128.6
> Number of obs: 9609, groups: Id, 6071
>
> Fixed effects:
> Estimate Std. Error t value
> (Intercept) -521.6985 16.8392 -30.98
> AgeGr 62.6786 0.9783 64.07
> PositionD 139.4682 7.8568 17.75
> PositionM 141.2227 7.7072 18.32
> PositionF 135.1241 8.1911 16.50
>
> Correlation of Fixed Effects:
> (Intr) AgeGr PostnD PostnM
> AgeGr -0.910
> PositionD -0.359 -0.009
> PositionM -0.375 0.001 0.810
> PositionF -0.349 -0.003 0.756 0.782
> > model=lmer(YoYo~AgeGr+Position+(1|Id))
> > summary(glht(model,linfct=mcp(Position="Tukey")))
>
> Simultaneous Tests for General Linear Hypotheses
>
> Multiple Comparisons of Means: Tukey Contrasts
>
>
> Fit: lmer(formula = YoYo ~ AgeGr + Position + (1 | Id))
>
> Linear Hypotheses:
> Estimate Std. Error z value Pr(>|z|)
> D - GK == 0 139.468 7.857 17.751 <1e-04 ***
> M - GK == 0 141.223 7.707 18.323 <1e-04 ***
> F - GK == 0 135.124 8.191 16.496 <1e-04 ***
> M - D == 0 1.754 4.799 0.366 0.983
> F - D == 0 -4.344 5.616 -0.774 0.862
> F - M == 0 -6.099 5.267 -1.158 0.645
> ---
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> (Adjusted p values reported -- single-step method)
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help op r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
[[alternative HTML version deleted]]
More information about the R-help
mailing list