[R] chi-square test

eliza botto eliza_botto at hotmail.com
Mon Sep 15 16:57:17 CEST 2014


Dear useRs of R,
I have two datasets (TT and SS) and i wanted to to see if my data is uniformly distributed or not?I tested it through chi-square test and results are given at the end of it.Now apparently P-value has a significant importance but I cant interpret the results and why it says that "In chisq.test(TT) : Chi-squared approximation may be incorrect"
###############################################################
> dput(TT)
structure(list(clc5 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.26, 0.14, 0, 0.44, 0.26, 0, 0, 0, 0, 0, 0, 0.11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.17, 0.16, 0.56, 0, 1.49, 0, 0.64, 0.79, 0.66, 0, 0, 0.17, 0, 0, 0, 0, 0.56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.43, 0.41, 0, 0.5, 0.44, 0, 0, 0, 0, 0.09, 0.46, 0, 0.27, 0.45, 0.15, 0.31, 0.16, 0.44, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.07, 0, 0, 0, 0, 0, 0.06, 0, 0.09, 0.07, 0, 0, 7.89, 0, 0.22, 0.29, 0.33, 0.27, 0, 0.36, 0.41, 0, 0, 0, 0, 0.55, 0.81, 0, 0.09, 0.13, 0.28, 0, 0, 0), quota_massima = c(1167L, 1167L, 4572L, 3179L, 3141L, 585L, 585L, 876L, 876L, 1678L, 2667L, 1369L, 1369L, 1369L, 1381L, 1381L, 1381L, 1381L, 2284L, 410L, 2109L, 2507L, 2579L, 2507L, 1436L, 3234L, 3234L, 3234L, 3234L, 2792L, 2569L, 2569L, 2569L, 1669L, 4743L, 4743L, 4743L, 3403L, 3197L, 3267L, 3583L, 3583L, 3583L, 2584L, 2584L, 2579L, 1241L, 1241L, 4174L, 3006L, 3197L, 2366L, 2618L, 2670L, 4487L, 3196L, 3196L, 2107L, 2107L, 2427L, 1814L, 2622L, 1268L, 1268L, 1268L, 3885L, 3885L, 3092L, 3234L, 2625L, 2625L, 3760L, 4743L, 3707L, 3760L, 4743L, 3760L, 3885L, 3760L, 4743L, 2951L, 782L, 2957L, 3343L, 2697L, 2697L, 3915L, 2277L, 1678L, 1678L, 3197L, 2957L, 2957L, 2957L, 4530L, 4530L, 4530L, 2131L, 3618L, 3618L, 3335L, 2512L, 2390L, 1616L, 3526L, 3197L, 3197L, 2625L, 2622L, 3197L, 3197L, 2622L, 2622L, 2622L, 368L, 4572L, 3953L, 863L, 3716L, 3716L, 3716L, 2697L, 2697L, 1358L)), .Names = c("clc5", "quota_massima"), class = "data.frame", row.names = c(NA, -124L))

>  chisq.test(TT)
        Pearson's Chi-squared test
data:  TT
X-squared = 411.5517, df = 123, p-value < 2.2e-16
Warning message:
In chisq.test(TT) : Chi-squared approximation may be incorrect 
#######################################################################
> dput(SS)
structure(list(NDVIanno = c(0.57, 0.536, 0.082, 0.262, 0.209, 0.539, 0.536, 0.543, 0.588, 0.599, 0.397, 0.63, 0.616, 0.644, 0.579, 0.597, 0.617, 0.622, 0.548, 0.528, 0.541, 0.436, 0.509, 0.467, 0.534, 0.412, 0.324, 0.299, 0.41, 0.462, 0.427, 0.456, 0.508, 0.581, 0.242, 0.291, 0.324, 0.28, 0.291, 0.305, 0.365, 0.338, 0.399, 0.516, 0.357, 0.558, 0.605, 0.638, 0.191, 0.377, 0.325, 0.574, 0.458, 0.426, 0.188, 0.412, 0.464, 0.568, 0.582, 0.494, 0.598, 0.451, 0.577, 0.572, 0.602, 0.321, 0.38, 0.413, 0.427, 0.55, 0.437, 0.481, 0.425, 0.234, 0.466, 0.464, 0.491, 0.463, 0.489, 0.435, 0.267, 0.564, 0.256, 0.156, 0.476, 0.498, 0.122, 0.508, 0.582, 0.615, 0.409, 0.356, 0.284, 0.285, 0.444, 0.303, 0.478, 0.557, 0.345, 0.408, 0.347, 0.498, 0.534, 0.576, 0.361, 0.495, 0.502, 0.553, 0.519, 0.504, 0.53, 0.547, 0.559, 0.505, 0.557, 0.377, 0.36, 0.613, 0.452, 0.397, 0.277, 0.42, 0.443, 0.62), delta_z = c(211L, 171L, 925L, 534L, 498L, 50L, 53L, 331L, 135L, 456L, 850L, 288L, 286L, 233L, 342L, 274L, 184L, 198L, 312L, 67L, 476L, 676L, 349L, 873L, 65L, 963L, 553L, 474L, 948L, 1082L, 616L, 704L, 814L, 450L, 865L, 987L, 1265L, 720L, 565L, 652L, 941L, 822L, 1239L, 929L, 477L, 361L, 199L, 203L, 642L, 788L, 818L, 450L, 703L, 760L, 711L, 1015L, 1351L, 195L, 511L, 617L, 296L, 604L, 381L, 389L, 287L, 1043L, 1465L, 963L, 1125L, 582L, 662L, 1424L, 1762L, 575L, 1477L, 1364L, 1236L, 1483L, 1201L, 1644L, 498L, 142L, 510L, 482L, 811L, 788L, 466L, 626L, 461L, 350L, 1177L, 826L, 575L, 568L, 916L, 767L, 1017L, 532L, 1047L, 1370L, 902L, 686L, 703L, 440L, 1016L, 1148L, 1089L, 753L, 650L, 1065L, 568L, 712L, 762L, 636L, 79L, 1092L, 955L, 158L, 1524L, 1145L, 673L, 513L, 596L, 239L)), .Names = c("NDVIanno", "delta_z"), class = "data.frame", row.names = c(NA, -124L))
>  chisq.test(SS)
        Pearson's Chi-squared test
data:  SS
X-squared = 72.8115, df = 123, p-value = 0.9999
Warning message:
In chisq.test(SS) : Chi-squared approximation may be incorrect
#####################################################################################
Kindly guide me through like you always did :)
thanks in advance,


Eliza 		 	   		  
	[[alternative HTML version deleted]]



More information about the R-help mailing list