[R] how is the model resample performance calculated by caret?
Max Kuhn
mxkuhn at gmail.com
Fri Feb 28 19:11:02 CET 2014
On Fri, Feb 28, 2014 at 1:13 AM, zhenjiang zech xu
<zhenjiang.xu at gmail.com> wrote:
> Dear all,
>
> I did a 5-repeat of 10-fold cross validation using partial least square
> regression model provided by caret package. Can anyone tell me how are the
> values in plsTune$resample calculated? Is that predicted on each hold-out
> set using the model which is trained on the rest data with the optimized
> parameter tuned from previous cross validation?
Yes, those values are the performance estimates across each hold-out
using the final model. There is an option in trainControl() that will
have it return the resamples from all models too.
> So in the following
> example, firstly, 5-repeat of 10-fold cross validation gives 2 for ncomp as
> the best, and then using ncomp of 2 and the training data to build a model
> and then predict the hold-out data with the model to give a RMSE and
> RSQUARE - is what I am thinking true?
It is.
Max
>
>
>> plsTune
> 524 samples
> 615 predictors
>
> Pre-processing: centered, scaled
> Resampling: Cross-Validation (10 fold, repeated 5 times)
>
> Summary of sample sizes: 472, 472, 471, 471, 471, 471, ...
>
> Resampling results across tuning parameters:
>
> ncomp RMSE Rsquared RMSE SD Rsquared SD
> 1 16.8 0.434 1.47 0.0616
> 2 14.3 0.612 2.21 0.0768
> 3 13.5 0.704 6.33 0.145
> 4 14.6 0.706 9.29 0.163
> 5 15.2 0.703 10.9 0.172
> 6 16.5 0.69 13.4 0.181
> 7 18.4 0.672 17.8 0.194
> 8 20 0.651 20.4 0.199
> 9 20.9 0.634 20.9 0.199
> 10 22.1 0.613 22.1 0.197
> 11 23.3 0.599 23.8 0.198
> 12 24 0.588 24.7 0.198
> 13 24.9 0.572 25.2 0.197
> 14 25.8 0.557 26.2 0.194
> 15 26.2 0.544 25.8 0.191
> 16 26.6 0.532 25.5 0.187
>
> RMSE was used to select the optimal model using the one SE rule.
> The final value used for the model was ncomp = 2.
>>
>> plsTune$resample
> ncomp RMSE Rsquared Resample
> 1 2 13.61569 0.6349700 Fold06.Rep4
> 2 2 16.02091 0.5808985 Fold05.Rep1
> 3 2 12.59985 0.6008357 Fold03.Rep5
> 4 2 13.20069 0.6296245 Fold02.Rep3
> 5 2 12.43419 0.6560434 Fold04.Rep2
> 6 2 15.36510 0.5954177 Fold04.Rep5
> 7 2 12.70028 0.6894489 Fold03.Rep2
> 8 2 13.34882 0.6468300 Fold09.Rep3
> 9 2 14.80217 0.5575010 Fold08.Rep3
> 10 2 19.03705 0.4907630 Fold05.Rep4
> 11 2 14.26704 0.6579390 Fold10.Rep2
> 12 2 13.79060 0.5806663 Fold05.Rep3
> 13 2 14.83641 0.5918039 Fold05.Rep2
> 14 2 12.48721 0.7011439 Fold01.Rep3
> 15 2 14.98765 0.5866102 Fold07.Rep4
> 16 2 10.88100 0.7597167 Fold06.Rep1
> 17 2 13.60705 0.6321377 Fold08.Rep5
> 18 2 13.42618 0.6136031 Fold08.Rep4
> 19 2 13.26066 0.6784586 Fold07.Rep1
> 20 2 13.20623 0.6812341 Fold03.Rep3
> 21 2 18.54275 0.4404729 Fold08.Rep2
> 22 2 11.80312 0.7177681 Fold05.Rep5
> 23 2 18.56271 0.4661072 Fold03.Rep1
> 24 2 13.54879 0.5850439 Fold10.Rep3
> 25 2 14.10859 0.5994811 Fold06.Rep5
> 26 2 13.68329 0.6701091 Fold01.Rep5
> 27 2 16.12123 0.5401200 Fold10.Rep1
> 28 2 12.92250 0.6917220 Fold06.Rep3
> 29 2 12.94366 0.6400066 Fold06.Rep2
> 30 2 12.39889 0.6790578 Fold01.Rep2
> 31 2 13.48499 0.6759649 Fold01.Rep1
> 32 2 12.52938 0.6728476 Fold03.Rep4
> 33 2 16.43352 0.5795160 Fold09.Rep5
> 34 2 12.53991 0.6550694 Fold09.Rep4
> 35 2 12.78708 0.6304606 Fold08.Rep1
> 36 2 13.97559 0.6655688 Fold04.Rep3
> 37 2 15.31642 0.5124997 Fold09.Rep2
> 38 2 15.24194 0.5324943 Fold09.Rep1
> 39 2 12.90107 0.6318960 Fold04.Rep1
> 40 2 13.59574 0.6277869 Fold01.Rep4
> 41 2 19.73633 0.4154821 Fold07.Rep5
> 42 2 12.03759 0.6537381 Fold02.Rep5
> 43 2 15.47139 0.5597097 Fold02.Rep4
> 44 2 22.55060 0.3816672 Fold07.Rep3
> 45 2 14.57875 0.6269560 Fold07.Rep2
> 46 2 13.02385 0.6395148 Fold02.Rep2
> 47 2 13.81020 0.6116137 Fold02.Rep1
> 48 2 13.46100 0.6200828 Fold04.Rep4
> 49 2 13.95487 0.6709253 Fold10.Rep5
> 50 2 12.65981 0.6606435 Fold10.Rep4
>
> Best,
> Zhenjiang
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list