[R] using ddply with segmented regression

David Winsemius dwinsemius at comcast.net
Tue Oct 15 00:29:35 CEST 2013


On Oct 14, 2013, at 2:57 PM, Prew, Paul wrote:

> Hello,  the code provided by arun did the trick.  Thank you very much, arun.  
> 
> However, I'm now unsure of how to further process the results .  Looking at the vignette  aka "split-apply-combine". It appears that I could now create a dataframe from the list of results, and then run the results through the function plot.segmented to view the piecewise regressions by the grouping variable Lot.Run.  However, the list is not in the structure expected by ldply -- 
> 
>> SP.seg <- dlply((df,.(Lot.Run),segmentf_df)

That wasn't the name of the dataframe you offered in the first post.... and this code could not possibly have not thrown an error since there are unmatched parens.

>> SP.out <- ldply(SP.seg)

So what function were you intending to be used in that call to ldply ...  after you fix the errors above? If you are using ldply to process the models with plot.segmented, then realize that the object returned will be an empty dataframe but hte plots will be done.

> 
> [9] ERROR:
> Results must be all atomic, or all data frames
> 
>> class(SP.seg)[[1]]
> [1] "list"
> 
>> head(SP.seg)
> $`J062431-1`
> Call: segmented.lm(obj = out.lm, seg.Z = ~Cycle, psi = (Cycle = NA), 
>    control = seg.control(stop.if.error = FALSE, n.boot = 0, 
>        gap = FALSE, jt = FALSE, nonParam = TRUE))
> 
> Meaningful coefficients of the linear terms:
> (Intercept)        Cycle     U1.Cycle     U2.Cycle     U3.Cycle     U4.Cycle     U5.Cycle     U6.Cycle  
>   40.11786     -0.06664     -0.68539      0.49316      0.14955      0.03612      0.22257     -0.41166  
>   U7.Cycle     U8.Cycle     U9.Cycle    U10.Cycle  
>   -0.48365      0.37949      0.24945      0.06712  
> 
> Estimated Break-Point(s) psi1.Cycle psi2.Cycle psi3.Cycle psi4.Cycle psi5.Cycle psi6.Cycle psi7.Cycle psi8.Cycle psi9.Cycle psi10.Cycle :  19.67  34.31  51.02  72.10  97.94 117.20 130.10 147.10 155.70 160.40 
> 
> $`J062431-2`
> Call: segmented.lm(obj = out.lm, seg.Z = ~Cycle, psi = (Cycle = NA), 
>    control = seg.control(stop.if.error = FALSE, n.boot = 0, 
>        gap = FALSE, jt = FALSE, nonParam = TRUE))
> 
> Meaningful coefficients of the linear terms:
> (Intercept)        Cycle     U1.Cycle     U2.Cycle     U3.Cycle     U4.Cycle     U5.Cycle     U6.Cycle  
>   40.11786     -0.06664     -0.68539      0.49316      0.14955      0.03612      0.22257     -0.41166  
>   U7.Cycle     U8.Cycle     U9.Cycle    U10.Cycle  
>   -0.48365      0.37949      0.24945      0.06712  
> 
> Estimated Break-Point(s) psi1.Cycle psi2.Cycle psi3.Cycle psi4.Cycle psi5.Cycle psi6.Cycle psi7.Cycle psi8.Cycle psi9.Cycle psi10.Cycle :  19.67  34.31  51.02  72.10  97.94 117.20 130.10 147.10 155.70 160.40
> 
> My hope was to eventually increase my understanding enough to create lattice plots using 'segment.plot' via ldply.  Will that even work with the output object from this segmented package?  

Hard to tell. You seem to be changing the names of your objects at random.

> 
> Thanks,Paul
> 
> Paul Prew  |  Statistician
> 651-795-5942   |   fax 651-204-7504 
> Ecolab Research Center  | Mail Stop ESC-F4412-A 
> 655 Lone Oak Drive  |  Eagan, MN 55121-1560 
> 
> -----Original Message-----
> From: arun [mailto:smartpink111 at yahoo.com] 
> Sent: Saturday, October 12, 2013 1:42 AM
> To: R help
> Cc: Prew, Paul
> Subject: Re: [R] using ddply with segmented regression
> 
> 
> 
> Hi,
> Try:
> 
> segmentf_df <- function(df) {
> out.lm<-lm(deltaWgt~Cycle, data=df)
> segmented(out.lm,seg.Z=~Cycle, psi=(Cycle=NA),control=seg.control(stop.if.error=FALSE,n.boot=0))
> }
> 
> library(plyr)
> library(segmented)
> 
> dlply(df,.(Lot.Run),segmentf_df)
> $`J062431-1`
> Call: segmented.lm(obj = out.lm, seg.Z = ~Cycle, psi = (Cycle = NA), 
>     control = seg.control(stop.if.error = FALSE, n.boot = 0))
> 
> Meaningful coefficients of the linear terms:
> (Intercept)        Cycle     U1.Cycle     U2.Cycle  
>      38.480        1.130       -2.760        1.497  
> 
> Estimated Break-Point(s) psi1.Cycle psi2.Cycle : 3.732 5.056 
> 
> $`J062431-2`
> Call: segmented.lm(obj = out.lm, seg.Z = ~Cycle, psi = (Cycle = NA), 
>     control = seg.control(stop.if.error = FALSE, n.boot = 0))
> 
> Meaningful coefficients of the linear terms:
> (Intercept)        Cycle     U1.Cycle     U2.Cycle  
>     48.4300      -3.2500       3.0905      -0.6555  
> 
> Estimated Break-Point(s) psi1.Cycle psi2.Cycle :  2.12 22.15 
> 
> attr(,"split_type")
> [1] "data.frame"
> attr(,"split_labels")
>     Lot.Run
> 1 J062431-1
> 2 J062431-2
> 
> 
> #or
> 
> dlply(df,.(Lot.Run),function(x) segmentf_df(x))
> #or
> lapply(split(df,df$Lot.Run,drop=TRUE),function(x) segmentf_df(x))
> 
> 
> A.K.
> 
> 
> On Friday, October 11, 2013 11:16 PM, "Prew, Paul" <Paul.Prew at ecolab.com> wrote:
> Hello,
> 
> I’m unsuccessfully trying to apply piecewise linear regression over each of 22 groups.  The data structure of the reproducible toy dataset is below.  I’m using the ‘segmented’ package, it worked fine with a data set that containing only one group (“Lot.Run”).
> 
> $ Cycle   : int  1 2 3 4 5 6 7 8 9 10 ...
> $ Lot.Run : Factor w/ 22 levels "J062431-1","J062431-2",..: 1 1 1 1 1 1 1 1 1 1 ...
> $ deltaWgt: num  38.7 42.6 41 42.3 40.6 ...
> 
> I am new to ‘segmented’, and also new to ‘plyr’, which is how I’m trying to apply this segmented regression to the 22 Lot.Run groups.  Within a Lot.Run, the piecewise linear regressions are deltaWgt vs. Cycle.
> 
> #####  define the linear regression #####
> out.lm<-lm(deltaWgt~Cycle, data=Test50.df)
> 
> #####  define the function called by dlply  #####
>        #####  find cutpoints via bootstrapping, fit the piecewise regressions  #####
> segmentf_df <- function(df) {
> segmented(out.lm,seg.Z=~Cycle, psi=(Cycle=NA),control=seg.control(stop.if.error=FALSE,n.boot=0)), data = df)
> }
> 
> at this point, there’s an  error message
> 23] ERROR: <text>
> 
> #####  repeat for each Lot.Run group   #####
> dlply(Test50.df, .(Lot.Run), segmentf_df)
> 
> at this point, there’s an  error message
> [28] ERROR:
> object 'segmentf_df' not found
> 
> Any suggestions?
> Thanks, Paul
> 
>> dput(Test50.df)
> structure(list(Cycle = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
> 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
> 23L, 24L, 25L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
> 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
> 25L), Lot.Run = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
> 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("J062431-1",
> "J062431-2", "J062431-3", "J062432-1", "J062432-2", "J062433-1",
> "J062433-2", "J062433-3", "Lot 1-1", "Lot 1-2", "Lot 2-1", "Lot 2-2",
> "Lot 2-3", "Lot 3-1", "Lot 3-2", "Lot 3-3", "P041231-1", "P041231-2",
> "P041531-1", "P041531-2", "P041531-3", "P041531-4"), class = "factor"),
>     deltaWgt = c(38.69, 42.58, 40.95, 42.26, 40.63, 41.61, 36.73,
>     41.28, 39.98, 40.63, 39.66, 39.98, 40.95, 38.36, 39.01, 39,
>     38.03, 39.66, 37.7, 39.66, 40.63, 38.03, 37.71, 36.73, 37.7,
>     45.18, 41.93, 42.59, 39.98, 40.95, 42.91, 38.03, 40.96, 39,
>     41.61, 39.33, 43.88, 39.98, 38.68, 38.68, 36.08, 39.99, 38.35,
>     40.31, 40.63, 38.68, 37.05, 38.36, 35.43, 36.73)), .Names = c("Cycle",
> "Lot.Run", "deltaWgt"), row.names = c(1L, 2L, 3L, 4L, 5L, 6L,
> 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
> 20L, 21L, 22L, 23L, 24L, 25L, 207L, 208L, 209L, 210L, 211L, 212L,
> 213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 222L, 223L,
> 224L, 225L, 226L, 227L, 228L, 229L, 230L, 231L), class = "data.frame")
> 
> 
> 


David Winsemius
Alameda, CA, USA



More information about the R-help mailing list