[R] issues with calling predict.coxph.penal (survival) inside a function - subset-vector not found. Because of NextMethod?
Simon Zehnder
szehnder at uni-bonn.de
Wed Nov 13 16:35:54 CET 2013
Works for me:
predicting_function(fit2,test1)
1 2 3 4 5 6 7
-1.0481141 0.1495946 0.4492597 0.4492597 0.9982492 -0.4991246 -0.4991246
Best
Simon
On 13 Nov 2013, at 15:46, julian.bothe at elitepartner.de wrote:
> Hello everyone,
>
>
>
> I got an issue with calling predict.coxph.penal inside a function.
>
>
>
> Regarding the context: My original problem is that I wrote a function that
> uses predict.coxph and survfit(model) to predict
>
> a lot of survival-curves using only the basis-curves for the strata (as
> delivered by survfit(model) ) and then adapts them with
>
> the predicted risk-scores. Because there are cases where my new data has
> strata which didn't exist in the original model I exclude
>
> them, using a Boolean vector inside the function.
>
> I end up with a call like this: predict (coxph_model,
> newdata[subscript_vector,] )
>
>
>
> This works fine for coxph.model, but when I fit a model with a spline
> (class coxph.penal), I get an error:
>
> "Error in `[.data.frame`(newdata, [subscript_vector, ) : object
> '[subscript_vector ' not found"
>
>
>
> I suppose this is because of NextMethod, but I am not sure how to work
> around it. I also read a little bit about all those
> matching-and-frame-issues,
>
> But must confess I am not really into it.
>
>
>
> I attach a reproducible example.
>
> Any help or suggestions of work-arounds will be appreciated.
>
>
>
> Thanks
>
> Julian
>
>
>
>> version
>
> _
>
> platform x86_64-w64-mingw32
>
> arch x86_64
>
> os mingw32
>
> system x86_64, mingw32
>
> status
>
> major 3
>
> minor 0.1
>
> year 2013
>
> month 05
>
> day 16
>
> svn rev 62743
>
> language R
>
> version.string R version 3.0.1 (2013-05-16)
>
> nickname Good Sport
>
>
>
>
>
> ##TEST-DATA
>
>
>
> # Create the simplest test data set
>
> test1 <- data.frame(time=c(4,3,1,1,2,2,3),
>
> status=c(1,1,1,0,1,1,0),
>
> x=c(0,2,1,1,1,0,0),
>
> sex=c(0,0,0,0,1,1,1))
>
>
>
> # Fit a stratified model
>
> fit1 <- coxph(Surv(time, status) ~ x + strata(sex), test1)
>
> summary(fit1)
>
>
>
> #fit stratified wih spline
>
> fit2 <- coxph(Surv(time, status) ~ pspline(x, df=2) + strata(sex), test1)
>
> summary(fit2)
>
>
>
> #function to predict within
>
>
>
> predicting_function <- function(model, newdata){
>
> subs <-vector(mode='logical', length=nrow(newdata))
>
> subs[1:length(subs)]<- TRUE
>
>
>
> ret <- predict (model, newdata=newdata[subs,])
>
> return(ret)
>
> }
>
>
>
> predicting_function(fit1, test1) # works
>
>
>
> predicting_function(fit2,test1) #doesnt work - Error in
> `[.data.frame`(newdata, subs, ) : object 'subs' not found
>
> # probably because of NextMethod
>
>
>
> #--------
>
>> traceback()
>
> #12: `[.data.frame`(newdata, subs, )
>
> #11: newdata[subs, ]
>
> #10: is.data.frame(data)
>
> #9: model.frame.default(data = newdata[subs, ], formula = ~pspline(x,
>
> # df = 2) + strata(sex), na.action = function (object, ...)
>
> # object)
>
> #8: model.frame(data = newdata[subs, ], formula = ~pspline(x, df = 2) +
>
> # strata(sex), na.action = function (object, ...)
>
> # object)
>
> #7: eval(expr, envir, enclos)
>
> #6: eval(tcall, parent.frame())
>
> #5: predict.coxph(model, newdata = newdata[subs, ])
>
> #4: NextMethod("predict", object, ...)
>
> #3: predict.coxph.penal(model, newdata = newdata[subs, ])
>
> #2: predict(model, newdata = newdata[subs, ]) at #5
>
> #1: predicting_function(fit2, test1)
>
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list