[R] Need help on dataframe
arun
smartpink111 at yahoo.com
Sat Jan 5 17:49:36 CET 2013
Hi,
One more way:
dat1<-read.table(text="
ID V1 V2 V3 V4
1 6 5 3 2
2 3 2 2 1
3 6 5 3 2
4 12 15 3 2
5 6 8 3 2
6 3 2 4 1
7 6 5 3 3
8 12 15 3 1
9 6 5 3 3
10 3 2 7 5
11 6 5 8 2
12 12 19 3 2
13 6 5 3 2
14 3 4 2 1
15 6 5 6 2
16 12 15 5 2
17 6 5 5 2
18 3 2 8 1
19 6 5 3 9
20 12 15 3 10
21 6 5 3 2
22 3 2 2 11
23 6 5 3 4
24 12 15 9 2
",sep="",header=TRUE,stringsAsFactors=FALSE)
res<-aggregate(.~1:nrow(dat1)%/%13,data=dat1[,-1],mean)
names(res)[1]<-"group"
res
# group V1 V2 V3 V4
#1 0 6.75 7.333333 3.750000 2.166667
#2 1 6.75 6.916667 4.333333 4.000000
A.K.
----- Original Message -----
From: Simonas Kecorius <simolas2008 at gmail.com>
To: r-help at r-project.org
Cc:
Sent: Saturday, January 5, 2013 8:33 AM
Subject: [R] Need help on dataframe
Dear R users, I came up to a problem by taking means (or other summary
statistics) of a big dataframe.
Suppose we do have a dataframe:
ID V1 V2 V3 V4 ........................ V71
1 6 5 3 2 ........................ 3
2 3 2 2 1 ........................ 1
3 6 5 3 2 ........................ 3
4 12 15 3 2 ........................ 100
........................................................
........................................................
288 10 20 30 30 .......................... 499
I need to find out the way, how to calculate a mean of every 12 lines to
get:
V1 V2 V3 V4
........................... V71
mean from 1 to 7 same as V1 same as V1
mean from 8 to 14 same as V1 same as V1
etc.
I can do it column by column using:
y.ts <- ts(y$V1, frequency=12)
aggregate(y.ts, FUN=mean)
Bu this is a hardcore... Can anyone suggest a better way to compute all the
dataframe at once and get a result as matrix?
Thank you in advance!
--
Simonas Kecorius
**
[[alternative HTML version deleted]]
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list