[R] spearman correlation and p-value as a matrix

arun smartpink111 at yahoo.com
Thu Feb 14 16:03:40 CET 2013


Dear Ozgul,

I made a comment in the previous email, which I didn't check it.
Thank you for the ?cor2m().
I checked the results of the example dataset with cor2m().  Does it have an option for spearman correlation?  

The values below seem to be pearson
#cor2m
 cor2m(bg,ag,trim=TRUE,alpha=0.05) ######I
      Otu00022 Otu00029   Otu00039 Otu00042  Otu00101 Otu00105 Otu00125
ag1  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
ag2  0.0000000      NaN  0.0000000      NaN 0.7743597      NaN      NaN
ag3 -0.8901029      NaN -0.8901029      NaN 0.0000000      NaN      NaN
ag4  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
ag5  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
    Otu00131   Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185   Otu00190
ag1      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
ag2      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
ag3      NaN -0.8901029      NaN      NaN      NaN      NaN      NaN -0.8901029
ag4      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
ag5      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
    Otu00209   Otu00218
ag1      NaN  0.0000000
ag2      NaN  0.0000000
ag3      NaN -0.8901029
ag4      NaN  0.0000000
ag5      NaN  0.0000000

#Pearson correlation from my solution:
resr<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x)
 {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]))$r; row.names(res)<- 
rep(paste(x[1],x[2],sep="_"),2);res})) 
 indx<-row(resr)%%2!=1
resrnew<-as.matrix(resr[indx[,1],1]) 
resrnew1<-data.frame(read.table(text=row.names(resrnew),sep="_",stringsAsFactors=FALSE),value=resrnew)
 row.names(resrnew1)<-1:nrow(resrnew1)
library(reshape2)
 dcast(resrnew1,V2~V1,value.var="value")   V2    Otu00022 Otu00029    Otu00039 Otu00042   Otu00101 Otu00105 Otu00125
#1 ag1 -0.12705141      NaN -0.12705141      NaN -0.6394308      NaN      NaN
#2 ag2 -0.61522514      NaN -0.61522514      NaN  0.7743597      NaN      NaN
#3 ag3 -0.89010286      NaN -0.89010286      NaN -0.2655363      NaN      NaN
#4 ag4  0.03036290      NaN  0.03036290      NaN -0.5638320      NaN      NaN
#5 ag5  0.08266317      NaN  0.08266317      NaN -0.2582930      NaN      NaN
 # Otu00131    Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185    Otu00190
#1      NaN -0.12705141      NaN      NaN      NaN      NaN      NaN -0.12705141
#2      NaN -0.61522514      NaN      NaN      NaN      NaN      NaN -0.61522514
#3      NaN -0.89010286      NaN      NaN      NaN      NaN      NaN -0.89010286
#4      NaN  0.03036290      NaN      NaN      NaN      NaN      NaN  0.03036290
#5      NaN  0.08266317      NaN      NaN      NaN      NaN      NaN  0.08266317
 # Otu00209    Otu00218
#1      NaN -0.12705141
#2      NaN -0.61522514
#3      NaN -0.89010286
#4      NaN  0.03036290
#5      NaN  0.08266317

A.K.



----- Original Message -----
From: Ozgul Inceoglu <Ozgul.Inceoglu at ulb.ac.be>
To: R help <r-help at r-project.org>
Cc: 
Sent: Thursday, February 14, 2013 1:10 AM
Subject: Re: [R] spearman correlation and p-value as a matrix

Thank you all for the answers. I really need to learn a lot. 
Bu I also discover cor2m(x, y, trim = TRUE, alpha = 0.05)
in ecodist package, which gives an output file with significant correlations.

Özgül

Yj>HI,
>
>#ag data was created
>bg<- as.matrix(read.table(text=" 
>     Otu00022 Otu00029 Otu00039 Otu00042 Otu00101 Otu00105 Otu00125 Otu00131 Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185 Otu00190 Otu00209 Otu00218 
>Gi20Jun11  0.001217        0 0.001217        0 0.000000        0        0        0 0.001217        0        0        0        0        0 0.001217        0 0.001217 
>Gi40Jun11  0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>Gi425Jun11 0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>Gi45Jun11  0.000000        0 0.000000        0 0.001513        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>Gi475Jun11 0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>Gi50Jun11  0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>",sep="",header=TRUE,stringsAsFactors=F))
>set.seed(128)
>ag<- matrix(rnorm(30),nrow=6)
>colnames(ag)<- paste("ag",1:5,sep="")
>bg_ag<-expand.grid(colnames(bg),colnames(ag),stringsAsFactors=FALSE)
> attr(bg_ag,"out.attrs")<- NULL
> library(Hmisc)
>#correlation
>resr<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x) {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]),type="spearman")$r; row.names(res)<- rep(paste(x[1],x[2],sep="_"),2);res}))
> head(resr)
>#                 [,1]      [,2]
>#Otu00022_ag1 1.0000000 0.1309307
>#Otu00022_ag1 0.1309307 1.0000000
>#Otu00029_ag1 1.0000000       NaN
>#Otu00029_ag1       NaN 1.0000000
>#Otu00039_ag1 1.0000000 0.1309307
>#Otu00039_ag1 0.1309307 1.0000000
>
>#p-values
>resP<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x) {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]),type="spearman")$P; row.names(res)<- rep(paste(x[1],x[2],sep="_"),2);res}))
>  head(resP)
>#                  [,1]      [,2]
>#Otu00022_ag1        NA 0.8047262
>#Otu00022_ag1 0.8047262        NA
>#Otu00029_ag1        NA       NaN
>#Otu00029_ag1       NaN        NA
>#Otu00039_ag1        NA 0.8047262
>#Otu00039_ag1 0.8047262        NA
>
>#If you need only the values
>indx<-row(resr)%%2!=1
> resPnew<-as.matrix(resP[indx[,1],1])
> resrnew<-as.matrix(resr[indx[,1],1])
>
>head(resPnew)
>#                  [,1]
>#Otu00022_ag1 0.8047262
>#Otu00029_ag1       NaN
>#Otu00039_ag1 0.8047262
>#Otu00042_ag1       NaN
>#Otu00101_ag1 0.1583024
>#Otu00105_ag1       NaN
>
>head(resrnew)
>#                   [,1]
>#Otu00022_ag1  0.1309307
>#Otu00029_ag1        NaN
>#Otu00039_ag1  0.1309307
>#Otu00042_ag1        NaN
>#Otu00101_ag1 -0.6546537
>#Otu00105_ag1        NaN
>
>A.K.
>
>
>
>
>----- Original Message -----
>From: Ozgul Inceoglu <Ozgul.Inceoglu at ulb.ac.be>
>To: r-help at r-project.org
>Cc: 
>Sent: Wednesday, February 13, 2013 4:48 AM
>Subject: [R] spearman correlation and p-value as a matrix
>
>I have two data matrices that I want to make the correlation between each column from data1 and each column from data 2 and also calculate the p-value Matrices dont have the same size and I tried such a script.
>> bg <- read.table (file.choose(), header=T, row.names) 
>> bg 
>> Otu00022 Otu00029 Otu00039 Otu00042 Otu00101 Otu00105 Otu00125 Otu00131 Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185 Otu00190 Otu00209 Otu00218 
>> Gi20Jun11 0.001217 0 0.001217 0 0.000000 0 0 0 0.001217 0 0 0 0 0 0.001217 0 0.001217 
>> Gi40Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>> Gi425Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>> Gi45Jun11 0.000000 0 0.000000 0 0.001513 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>> Gi475Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>> Gi50Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>ag <- read.table (file.choose(), header=T, row.names) 
>
>for (i in 1:(ncol(bg))) 
>for (j in 1:(ncol(ag))) 
>print(c(i,j))
>final_matrix <- matrix(rep("0",ncol(bg)*ncol(ag)),ncol=ncol(bg),nrow=ncol(ag))
>
>cor <- cor.test(as.vector(as.matrix(bg[,i])),as.vector(as.matrix(ag[,j])), method="spearman")
>
>#but the output is not matrice with all the values but a single correlation value
>
>data:  bg[, i] and ag[, j] 
>t = 2.2992, df = 26, p-value = 0.02978
>alternative hypothesis: true correlation is not equal to 0 
>95 percent confidence interval:
>0.04485289 0.67986803 
>sample estimates:
>      cor 
>0.4110515 
>
># How I can creat an outfile with all the correlations and p-values?
>
>Thank you very much!
>Özgül
>
>______________________________________________
>R-help at r-project.org mailing list
>https://stat.ethz.ch/mailman/listinfo/r-help
>PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>and provide commented, minimal, self-contained, reproducible code.
>
>
>

Özgül Inceoglu, PhD.

Université Libre de Bruxelles
Ecology of Aquatic Systems 
Campus de la plaine CP221  
Boulevard du triomphe  
1050 Bruxelles Belgium  

______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.




More information about the R-help mailing list