[R] Troubleshooting underidentification issues in structural equation modelling (SEM)
John Fox
jfox at mcmaster.ca
Sat Feb 9 17:38:03 CET 2013
Dear Ruijie,
Your model is underidentified by virtue of two of the factors having only
one observed indicator each. No SEM software can magically estimate this
model as it stands. Beyond that, I won't comment on the wisdom of what
you're doing, such as computing covariances between ordinal variables -- but
see what I discovered below.
Removing these two variables and the associated factors produces the
following model:
--------- snip ------------
> model <- cfa(reference.indicators=FALSE)
1: F01: I01, I02, I03
2: F02: I04, I05, I06, I07, I08, I09, I10, I11, I12, I13
3: F03: I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25, I26
4: F04: I27, I28, I29, I30, I31, I32, I33, I34
5: F05: I35, I36, I37, I38, I39, I40, I41, I42, I43
6: F07: I46, I47, I48, I49, I50, I51
7: F08: I54, I55, I56, I57, I58, I59, I60, I61, I62, I63, I64
8: F09: I65, I66, I67
9: F11: I69, I70, I71
10:
Read 9 items
NOTE: adding 66 variances to the model
>
> cfa.output <- sem(model, cov.mat, N = 900)
--------- snip ------------
sem() ran out of iterations, but the summary output is revealing:
--------- snip ------------
> summary(cfa.output)
Model Chisquare = 5677.1 Df = 2043 Pr(>Chisq) = 0
AIC = 6013.1
BIC = -8220.193
Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.9910 -0.5887 -0.1486 0.2588 0.8092 17.2900
R-square for Endogenous Variables
I01 I02 I03 I04 I05 I06 I07 I08 I09
I10
0.0953 0.1263 0.0000 0.1131 0.4039 0.2519 0.1168 0.0468 0.0005
0.0059
I11 I12 I13 I14 I15 I16 I17 I18 I19
I20
0.0479 0.0228 0.1150 0.2813 0.0001 0.0388 0.2106 0.0001 0.0913
0.0063
I21 I22 I23 I24 I25 I26 I27 I28 I29
I30
0.0041 0.0077 0.0022 0.0000 0.0299 0.0067 0.0019 0.0011 0.0010
0.0000
I31 I32 I33 I34 I35 I36 I37 I38 I39
I40
0.0005 0.0117 0.0270 0.0001 0.0084 0.0001 0.0256 0.4969 0.0613
0.0515
I41 I42 I43 I46 I47 I48 I49 I50 I51
I54
0.0005 0.0052 0.0307 0.0003 0.1131 0.0014 0.0000 0.1276 0.9728
0.0520
I55 I56 I57 I58 I59 I60 I61 I62 I63
I64
0.2930 0.0127 0.0543 0.0500 0.0378 0.0001 0.3048 0.0002 0.0304
0.0001
I65 I66 I67 I69 I70 I71
56.7264 0.0000 0.0002 0.2220 0.2342 0.2240
Parameter Estimates
Estimate Std Error z value Pr(>|z|)
lam[I01:F01] 3.023074e-02 5.133785e-03 5.888586224 3.895133e-09 I01 <---
F01
lam[I02:F01] 3.283192e-02 5.291069e-03 6.205157975 5.464199e-10 I02 <---
F01
lam[I03:F01] 1.123398e-04 2.695713e-03 0.041673509 9.667590e-01 I03 <---
F01
lam[I04:F02] 1.365329e-01 1.555023e-02 8.780124358 1.632940e-18 I04 <---
F02
lam[I05:F02] 9.525580e-02 5.517838e-03 17.263245517 8.896692e-67 I05 <---
F02
lam[I06:F02] 1.720147e-01 1.277593e-02 13.463962882 2.548717e-41 I06 <---
F02
lam[I07:F02] 3.164280e-02 3.543421e-03 8.930015663 4.259485e-19 I07 <---
F02
lam[I08:F02] 5.685988e-02 1.021854e-02 5.564386503 2.630763e-08 I08 <---
F02
lam[I09:F02] 1.234516e-03 2.228298e-03 0.554017268 5.795670e-01 I09 <---
F02
lam[I10:F02] 1.656005e-02 8.458411e-03 1.957820181 5.025112e-02 I10 <---
F02
lam[I11:F02] 8.785114e-02 1.560646e-02 5.629151062 1.810987e-08 I11 <---
F02
lam[I12:F02] 3.022114e-02 7.815459e-03 3.866842129 1.102537e-04 I12 <---
F02
lam[I13:F02] 5.075487e-02 5.732307e-03 8.854177302 8.430329e-19 I13 <---
F02
lam[I14:F03] 2.587670e-01 2.308125e-02 11.211137448 3.595430e-29 I14 <---
F03
lam[I15:F03] -2.999816e-04 1.469667e-03 -0.204115351 8.382634e-01 I15 <---
F03
lam[I16:F03] 2.314973e-02 5.256310e-03 4.404179628 1.061849e-05 I16 <---
F03
lam[I17:F03] 9.333201e-02 9.301123e-03 10.034488472 1.075152e-23 I17 <---
F03
lam[I18:F03] -3.389770e-04 1.469665e-03 -0.230649144 8.175874e-01 I18 <---
F03
lam[I19:F03] 6.783532e-02 1.005099e-02 6.749117110 1.487475e-11 I19 <---
F03
lam[I20:F03] 3.916003e-02 2.208166e-02 1.773418523 7.615938e-02 I20 <---
F03
lam[I21:F03] 7.260062e-03 5.059696e-03 1.434881038 1.513210e-01 I21 <---
F03
lam[I22:F03] 4.556262e-02 2.322628e-02 1.961683814 4.979931e-02 I22 <---
F03
lam[I23:F03] 1.528270e-03 1.469492e-03 1.039998378 2.983407e-01 I23 <---
F03
lam[I24:F03] -8.635421e-04 7.794243e-03 -0.110792296 9.117811e-01 I24 <---
F03
lam[I25:F03] 3.625777e-02 9.391320e-03 3.860774500 1.130282e-04 I25 <---
F03
lam[I26:F03] 2.350350e-02 1.287924e-02 1.824913234 6.801412e-02 I26 <---
F03
lam[I27:F04] 8.013741e-03 7.100286e-03 1.128650332 2.590454e-01 I27 <---
F04
lam[I28:F04] 1.094008e-03 1.051268e-03 1.040655898 2.980353e-01 I28 <---
F04
lam[I29:F04] 3.712052e-03 3.647614e-03 1.017665748 3.088368e-01 I29 <---
F04
lam[I30:F04] 2.309796e-04 3.735193e-03 0.061838730 9.506913e-01 I30 <---
F04
lam[I31:F04] 9.905663e-03 1.152962e-02 0.859149344 3.902581e-01 I31 <---
F04
lam[I32:F04] 2.612580e-02 2.019934e-02 1.293398622 1.958732e-01 I32 <---
F04
lam[I33:F04] 8.299228e-02 6.192966e-02 1.340105491 1.802111e-01 I33 <---
F04
lam[I34:F04] -1.131056e-03 2.529220e-03 -0.447195412 6.547340e-01 I34 <---
F04
lam[I35:F05] 7.917586e-03 3.671643e-03 2.156414987 3.105128e-02 I35 <---
F05
lam[I36:F05] -1.122579e-03 6.021404e-03 -0.186431415 8.521065e-01 I36 <---
F05
lam[I37:F05] 5.245211e-03 1.392977e-03 3.765467592 1.662377e-04 I37 <---
F05
lam[I38:F05] 1.459603e-01 1.212396e-02 12.038999880 2.216262e-33 I38 <---
F05
lam[I39:F05] 9.091376e-02 1.563821e-02 5.813567281 6.115538e-09 I39 <---
F05
lam[I40:F05] 1.174920e-01 2.202669e-02 5.334074682 9.603300e-08 I40 <---
F05
lam[I41:F05] -6.674451e-03 1.240103e-02 -0.538217344 5.904270e-01 I41 <---
F05
lam[I42:F05] 2.074782e-02 1.220154e-02 1.700426338 8.905076e-02 I42 <---
F05
lam[I43:F05] 2.058762e-02 4.991076e-03 4.124885623 3.709190e-05 I43 <---
F05
lam[I46:F07] -7.270739e-03 1.477067e-02 -0.492241486 6.225486e-01 I46 <---
F07
lam[I47:F07] 3.294388e-02 3.596677e-03 9.159533769 5.212202e-20 I47 <---
F07
lam[I48:F07] 1.960841e-02 1.764661e-02 1.111171519 2.664945e-01 I48 <---
F07
lam[I49:F07] -3.231036e-06 1.918097e-03 -0.001684501 9.986560e-01 I49 <---
F07
lam[I50:F07] 3.300839e-02 3.426575e-03 9.633058172 5.797778e-22 I50 <---
F07
lam[I51:F07] 3.234144e-02 1.806978e-03 17.898079438 1.220591e-71 I51 <---
F07
lam[I54:F08] 1.003417e-01 1.711888e-02 5.861462155 4.588091e-09 I54 <---
F08
lam[I55:F08] 1.408049e-01 9.886797e-03 14.241707324 5.047855e-46 I55 <---
F08
lam[I56:F08] 4.096655e-02 1.425085e-02 2.874673321 4.044457e-03 I56 <---
F08
lam[I57:F08] 7.137153e-02 1.191379e-02 5.990663872 2.089862e-09 I57 <---
F08
lam[I58:F08] 1.206947e-01 2.100849e-02 5.745043255 9.189749e-09 I58 <---
F08
lam[I59:F08] 7.178104e-02 1.439758e-02 4.985632949 6.175929e-07 I59 <---
F08
lam[I60:F08] 2.027172e-03 6.627611e-03 0.305867676 7.597054e-01 I60 <---
F08
lam[I61:F08] 1.215272e-01 8.374503e-03 14.511567971 1.023539e-47 I61 <---
F08
lam[I62:F08] 1.072324e-03 3.404172e-03 0.315002895 7.527595e-01 I62 <---
F08
lam[I63:F08] 4.836428e-02 1.084696e-02 4.458785647 8.242530e-06 I63 <---
F08
lam[I64:F08] -7.221766e-04 2.879830e-03 -0.250770557 8.019915e-01 I64 <---
F08
lam[I65:F09] 3.983293e+00 9.711381e+01 0.041016748 9.672825e-01 I65 <---
F09
lam[I66:F09] -1.673556e-03 4.096286e-02 -0.040855450 9.674111e-01 I66 <---
F09
lam[I67:F09] 5.049621e-04 1.235197e-02 0.040881113 9.673907e-01 I67 <---
F09
lam[I69:F11] 1.586150e-01 1.373361e-02 11.549406592 7.433188e-31 I69 <---
F11
lam[I70:F11] 8.237619e-02 6.956861e-03 11.840999012 2.395820e-32 I70 <---
F11
lam[I71:F11] 9.448552e-02 8.147082e-03 11.597468367 4.244491e-31 I71 <---
F11
C[F01,F02] 3.728217e-02 9.597514e-02 0.388456537 6.976782e-01 F02 <-->
F01
C[F01,F03] 7.240582e-01 1.355959e-01 5.339824854 9.303642e-08 F03 <-->
F01
C[F01,F04] -5.354253e-01 5.303413e-01 -1.009586227 3.126936e-01 F04 <-->
F01
C[F01,F05] 2.384885e-01 1.052432e-01 2.266070269 2.344708e-02 F05 <-->
F01
C[F01,F07] 1.040182e+00 1.489435e-01 6.983736644 2.874306e-12 F07 <-->
F01
C[F01,F08] -1.013298e-01 1.035977e-01 -0.978107752 3.280210e-01 F08 <-->
F01
C[F01,F09] 1.171918e-02 2.860487e-01 0.040969189 9.673205e-01 F09 <-->
F01
C[F01,F11] 7.946394e-02 1.093765e-01 0.726517178 4.675218e-01 F11 <-->
F01
C[F02,F03] 2.272594e-01 6.201036e-02 3.664862498 2.474715e-04 F03 <-->
F02
C[F02,F04] 1.730434e-01 2.421846e-01 0.714510214 4.749117e-01 F04 <-->
F02
C[F02,F05] 5.724325e-02 5.826660e-02 0.982436740 3.258847e-01 F05 <-->
F02
C[F02,F07] 6.462176e-02 4.345441e-02 1.487116261 1.369841e-01 F07 <-->
F02
C[F02,F08] 9.751552e-01 4.152782e-02 23.481976829 6.233472e-122 F08 <-->
F02
C[F02,F09] -6.044195e-04 1.578879e-02 -0.038281562 9.694632e-01 F09 <-->
F02
C[F02,F11] 1.026869e-01 6.243113e-02 1.644803751 1.000103e-01 F11 <-->
F02
C[F03,F04] 7.503546e-01 5.859127e-01 1.280659345 2.003133e-01 F04 <-->
F03
C[F03,F05] 2.162240e-01 6.673622e-02 3.239980149 1.195380e-03 F05 <-->
F03
C[F03,F07] 3.686512e-01 5.011777e-02 7.355697641 1.899325e-13 F07 <-->
F03
C[F03,F08] 2.308590e-01 6.677771e-02 3.457127167 5.459671e-04 F08 <-->
F03
C[F03,F09] 3.422314e-02 8.348605e-01 0.040992640 9.673018e-01 F09 <-->
F03
C[F03,F11] 2.699455e-01 7.051428e-02 3.828238253 1.290638e-04 F11 <-->
F03
C[F04,F05] 1.062305e+00 7.911158e-01 1.342793467 1.793389e-01 F05 <-->
F04
C[F04,F07] -8.324317e-02 1.748320e-01 -0.476132285 6.339801e-01 F07 <-->
F04
C[F04,F08] 1.389356e-01 2.448826e-01 0.567356043 5.704723e-01 F08 <-->
F04
C[F04,F09] 5.856590e-02 1.429422e+00 0.040971726 9.673184e-01 F09 <-->
F04
C[F04,F11] 2.294948e+00 1.661805e+00 1.380997204 1.672798e-01 F11 <-->
F04
C[F05,F07] 2.099261e-01 4.716298e-02 4.451078015 8.544029e-06 F07 <-->
F05
C[F05,F08] 4.221026e-02 6.261302e-02 0.674145115 5.002191e-01 F08 <-->
F05
C[F05,F09] 3.165187e-02 7.721368e-01 0.040992561 9.673018e-01 F09 <-->
F05
C[F05,F11] 7.351754e-01 6.818771e-02 10.781639916 4.203245e-27 F11 <-->
F05
C[F07,F08] 3.180037e-03 4.670052e-02 0.068094253 9.457106e-01 F08 <-->
F07
C[F07,F09] 6.292195e-03 1.535561e-01 0.040976532 9.673146e-01 F09 <-->
F07
C[F07,F11] 1.049909e-01 4.942732e-02 2.124147077 3.365785e-02 F11 <-->
F07
C[F08,F09] 1.346105e-02 3.284233e-01 0.040986879 9.673064e-01 F09 <-->
F08
C[F08,F11] 1.383223e-01 6.694679e-02 2.066152656 3.881407e-02 F11 <-->
F08
C[F09,F11] 4.571695e-02 1.115233e+00 0.040993193 9.673013e-01 F11 <-->
F09
V[I01] 8.680184e-03 4.762484e-04 18.226169942 3.199593e-74 I01 <-->
I01
V[I02] 7.459398e-03 4.540213e-04 16.429621740 1.173889e-60 I02 <-->
I02
V[I03] 7.478254e-03 3.527242e-04 21.201419570 9.265904e-100 I03 <-->
I03
V[I04] 1.461376e-01 7.255861e-03 20.140635357 3.251385e-90 I04 <-->
I04
V[I05] 1.339123e-02 8.832859e-04 15.160696593 6.438285e-52 I05 <-->
I05
V[I06] 8.789764e-02 4.794460e-03 18.333167786 4.499223e-75 I06 <-->
I06
V[I07] 7.568474e-03 3.765280e-04 20.100692934 7.277043e-90 I07 <-->
I07
V[I08] 6.587699e-02 3.167671e-03 20.796666217 4.639577e-96 I08 <-->
I08
V[I09] 3.217338e-03 1.517789e-04 21.197527600 1.006468e-99 I09 <-->
I09
V[I10] 4.621928e-02 2.185030e-03 21.152695320 2.606174e-99 I10 <-->
I10
V[I11] 1.535621e-01 7.387455e-03 20.786870576 5.690287e-96 I11 <-->
I11
V[I12] 3.908344e-02 1.860301e-03 21.009196121 5.404186e-98 I12 <-->
I12
V[I13] 1.983328e-02 9.856998e-04 20.121018746 4.830497e-90 I13 <-->
I13
V[I14] 1.710572e-01 1.211810e-02 14.115839622 3.033809e-45 I14 <-->
I14
V[I15] 1.075179e-03 5.071602e-05 21.199985035 9.552682e-100 I15 <-->
I15
V[I16] 1.326202e-02 6.467196e-04 20.506601881 1.879773e-93 I16 <-->
I16
V[I17] 3.265749e-02 1.988078e-03 16.426667150 1.232493e-60 I17 <-->
I17
V[I18] 1.075154e-03 5.071579e-05 21.199589039 9.633394e-100 I18 <-->
I18
V[I19] 4.579942e-02 2.353962e-03 19.456315348 2.576564e-84 I19 <-->
I19
V[I20] 2.413742e-01 1.144346e-02 21.092761358 9.269013e-99 I20 <-->
I20
V[I21] 1.269773e-02 6.009212e-04 21.130448044 4.175664e-99 I21 <-->
I21
V[I22] 2.667065e-01 1.265916e-02 21.068268778 1.555139e-98 I22 <-->
I22
V[I23] 1.072933e-03 5.069564e-05 21.164210344 2.041534e-99 I23 <-->
I23
V[I24] 3.024220e-02 1.426452e-03 21.200993757 9.350120e-100 I24 <-->
I24
V[I25] 4.271005e-02 2.065984e-03 20.672986805 6.064466e-95 I25 <-->
I25
V[I26] 8.208471e-02 3.892796e-03 21.086314551 1.062215e-98 I26 <-->
I26
V[I27] 3.448443e-02 1.627464e-03 21.189053796 1.204944e-99 I27 <-->
I27
V[I28] 1.074072e-03 5.065613e-05 21.203199739 8.921947e-100 I28 <-->
I28
V[I29] 1.388601e-02 6.548663e-04 21.204342235 8.707941e-100 I29 <-->
I29
V[I30] 3.656256e-02 1.724532e-03 21.201435371 9.262794e-100 I30 <-->
I30
V[I31] 1.989840e-01 9.383562e-03 21.205594692 8.479218e-100 I31 <-->
I31
V[I32] 5.755557e-02 2.882318e-03 19.968499245 1.035172e-88 I32 <-->
I32
V[I33] 2.481455e-01 1.532786e-02 16.189179144 6.012530e-59 I33 <-->
I33
V[I34] 1.484183e-02 7.000026e-04 21.202534570 9.048952e-100 I34 <-->
I34
V[I35] 7.415580e-03 3.516263e-04 21.089380308 9.955712e-99 I35 <-->
I35
V[I36] 2.011634e-02 9.488573e-04 21.200591226 9.430434e-100 I36 <-->
I36
V[I37] 1.047757e-03 5.025784e-05 20.847625170 1.601775e-96 I37 <-->
I37
V[I38] 2.156861e-02 3.241426e-03 6.654050864 2.851341e-11 I38 <-->
I38
V[I39] 1.265785e-01 6.238795e-03 20.288931432 1.610577e-91 I39 <-->
I39
V[I40] 2.541968e-01 1.242997e-02 20.450322391 5.967951e-93 I40 <-->
I40
V[I41] 8.528364e-02 4.023849e-03 21.194542822 1.072350e-99 I41 <-->
I41
V[I42] 8.216499e-02 3.888144e-03 21.132187265 4.024656e-99 I42 <-->
I42
V[I43] 1.337408e-02 6.438437e-04 20.772251070 7.715629e-96 I43 <-->
I43
V[I46] 1.907454e-01 8.996895e-03 21.201249767 9.299396e-100 I46 <-->
I46
V[I47] 8.508783e-03 4.165525e-04 20.426677159 9.687421e-93 I47 <-->
I47
V[I48] 2.714640e-01 1.280461e-02 21.200497563 9.449220e-100 I48 <-->
I48
V[I49] 3.218862e-03 1.518230e-04 21.201415045 9.266795e-100 I49 <-->
I49
V[I50] 7.447779e-03 3.685477e-04 20.208454710 8.249036e-91 I50 <-->
I50
V[I51] 2.929982e-05 1.053218e-04 0.278193234 7.808640e-01 I51 <-->
I51
V[I54] 1.833931e-01 8.842196e-03 20.740673158 1.488283e-95 I54 <-->
I54
V[I55] 4.784306e-02 2.783744e-03 17.186584134 3.346789e-66 I55 <-->
I55
V[I56] 1.304849e-01 6.185550e-03 21.095115843 8.818929e-99 I56 <-->
I56
V[I57] 8.868251e-02 4.280267e-03 20.718917274 2.338858e-95 I57 <-->
I57
V[I58] 2.765876e-01 1.332324e-02 20.759777754 1.000282e-95 I58 <-->
I58
V[I59] 1.309969e-01 6.275841e-03 20.873197799 9.384143e-97 I59 <-->
I59
V[I60] 2.844711e-02 1.341830e-03 21.200226581 9.503782e-100 I60 <-->
I60
V[I61] 3.368300e-02 1.992102e-03 16.908270471 3.910162e-64 I61 <-->
I61
V[I62] 7.504898e-03 3.540020e-04 21.200154519 9.518345e-100 I62 <-->
I62
V[I63] 7.472838e-02 3.568523e-03 20.940981942 2.267379e-97 I63 <-->
I63
V[I64] 5.371193e-03 2.533508e-04 21.200616220 9.425427e-100 I64 <-->
I64
V[I65] -1.558692e+01 7.736661e+02 -0.020146825 9.839262e-01 I65 <-->
I65
V[I66] 6.009302e-02 2.837570e-03 21.177638375 1.535393e-99 I66 <-->
I66
V[I67] 1.075013e-03 5.220505e-05 20.592119939 3.229259e-94 I67 <-->
I67
V[I69] 8.817859e-02 5.000004e-03 17.635704215 1.310532e-69 I69 <-->
I69
V[I70] 2.218392e-02 1.279170e-03 17.342438243 2.249872e-67 I70 <-->
I70
V[I71] 3.093500e-02 1.758727e-03 17.589432179 2.968370e-69 I71 <-->
I71
Iterations = 1000
--------- snip ------------
Several of the observed variables have R^2s that round to 0 and many more
are very small.
I don't have your original data, but I did look at the input covariance
matrix. Here are the standard deviations of the observed variables:
--------- snip ------------
> sqrt(diag(cov.mat))
I01 I02 I03 I04 I05 I06 I07
0.09794939 0.09239769 0.08647698 0.40592964 0.14988296 0.34276336 0.09257290
I08 I09 I10 I11 I12 I13 I14
0.26288788 0.05673501 0.21562354 0.40159670 0.19999190 0.14969750 0.48787040
I15 I16 I17 I18 I19 I20 I21
0.03279129 0.11746460 0.20339207 0.03279129 0.22450179 0.49285671 0.11291786
I22 I23 I24 I25 I26 I27 I28
0.51844236 0.03279129 0.17390500 0.20982058 0.28746674 0.18587268 0.03279129
I29 I30 I31 I32 I33 I34 I35
0.11789736 0.19121352 0.44618622 0.24132578 0.50500808 0.12183229 0.08647698
I36 I37 I38 I39 I40 I41 I42
0.14183651 0.03279129 0.20705800 0.36721084 0.51768833 0.29210990 0.28739426
I43 I45 I46 I47 I48 I49 I50
0.11746460 0.13454976 0.43680464 0.09794939 0.52139099 0.05673501 0.09239769
I51 I54 I55 I56 I57 I58 I59
0.03279129 0.43984267 0.26013269 0.36354251 0.30622933 0.53958761 0.36898429
I60 I61 I62 I63 I64 I65 I66
0.16867489 0.22011795 0.08663745 0.27761032 0.07329198 0.52861343 0.24514452
I67 I68 I69 I70 I71
0.03279129 0.16616880 0.33665601 0.17020504 0.19965594
--------- snip ------------
Some of the standard deviations are very small, suggesting that the
corresponding variables must have been close to invariant in your data set.
If you haven't already done so, I think that you might back up and look more
closely at your data, and perhaps seek some competent local help.
I hope that this helps,
John
-----------------------------------------------
John Fox
Senator McMaster Professor of Social Statistics
Department of Sociology
McMaster University
Hamilton, Ontario, Canada
> -----Original Message-----
> From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
> On Behalf Of Ruijie
> Sent: Friday, February 08, 2013 9:56 PM
> To: R-help at stat.math.ethz.ch
> Subject: [R] Troubleshooting underidentification issues in structural
> equation modelling (SEM)
>
> Hi all, hope someone can help me out with this.
> Background Introduction
>
> I have a data set consisting of data collected from a questionnaire that
> I
> wish to validate. I have chosen to use confirmatory factor analysis to
> analyse this data set.
> Instrument
>
> The instrument consists of 11 subscales. There is a total of 68 items in
> the 11 subscales. Each item is scored on an integer scale between 1 to
> 4.
> Confirmatory factor analysis (CFA) setup
>
> I use the sem package to conduct the CFA. My code is as below:
>
> cov.mat <-
> as.matrix(read.table("http://dl.dropbox.com/u/1445171/cov.mat.csv",
> sep = ",", header = TRUE))
> rownames(cov.mat) <- colnames(cov.mat)
>
> model <- cfa(file = "http://dl.dropbox.com/u/1445171/cfa.model.txt",
> reference.indicators = FALSE)
> cfa.output <- sem(model, cov.mat, N = 900, maxiter = 80000, optimizer
> = optimizerOptim)
> Warning message:In eval(expr, envir, enclos) : Negative parameter
> variances.Model may be underidentified.
>
> Straight off you might notice a few anomalies, let me explain.
>
> - Why is the optimizer chosen to be optimizerOptim?
>
> ANS: I originally stuck with the default optimizerSem but no matter how
> many iterations I run, either I run out of memory first (8GB RAM setup)
> or
> it would report no convergence Things "seemed" a little better when I
> switched to optimizerOptim where by it would conclude successfully but
> throws up the error that the model is underidentified. Upon closer
> inspection, I realise that the output shows convergence as TRUE but
> iterations is NA so I am not sure what is exactly happening.
>
> - The maxiter is too high.
>
> ANS: If I set it to a lower value, it refuses to converge, although as
> mentioned above, I doubt real convergence actually occurred.
> Problem
>
> So by now I guess that the model is really underidentified so I looked
> for
> resources to resolve this problem and found:
>
> - http://davidakenny.net/cm/identify_formal.htm
> - http://faculty.ucr.edu/~hanneman/soc203b/lectures/identify.html
>
> I followed the 2nd link quite closely and applied the t-rule:
>
> - I have 68 observed variables, providing me with 68 variances and
> 2278
> covariances between variables = *2346 data points*.
> - I also have 68 regression coefficients, 68 error variances of
> variables, 11 factor variances and 55 factor covariances to estimate
> making
> it a total of 191 parameters.
> - Since I will be fixing the variances of the 11 latent factors to 1
> for
> scaling, I would remove them from the parameters to estimate making
> it a
> total of *180 parameters to estimate*.
> - My degrees of freedom is therefore 2346 - 180 = 2166, making it
> an
> over identified model by the t-rule.
>
> Questions
>
> 1. Is the low variance of some of my items a possible cause for the
> underidentification? I was advised previously to remove items with
> zero
> variance which led me to think about items which are very close to
> zero.
> Should they be removed too?
> 2. After reading much, I think but am not sure that it might be a
> case
> of empirical underidentification. Is there a systematic way of
> diagnosing
> what kind of underidentification it is? And what are my options to
> proceed
> with my analysis?
>
> I have more questions but let's take it at these 2 for now. Thanks for
> any
> help!
>
> Regards,
> Ruijie (RJ)
>
> --------
> He who has a why can endure any how.
>
> ~ Friedrich Nietzsche
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-
> guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list