[R] growth curve estimation
Vito M. R. Muggeo
vito.muggeo at unipa.it
Mon Dec 9 10:45:47 CET 2013
dear Daniel,
yet another package performing growth modelling is quantregGrowth. It
uses quantile regressions with B-splines and quadratic penalties to
ensure flexible estimation with additional noncrossing and monotonicity
(optional) constraints.
The paper underlying the package is here:
http://link.springer.com/article/10.1007/s10651-012-0232-1
best,
vito
Il 08/12/2013 16.45, Dániel Kehl ha scritto:
> Dear Community,
>
> I am struggling with a growth curve estimation problem. It is a classic BMI change with age calculation. I am not an expert of this field but have some statistical experience in other fields.
> Of course I started reading classical papers related to the topic and understood the concept of the LMS method. After that I thought it will be a "piece of cake", R must have a package related to the topic, so I just need the data and I am just a few lines of code from the results.
>
> I encountered some problems:
> - found at least three packages related to LMS: gamlss, VGAM and an old one lmsqreg (I did not try this because it does not support my R version (3.0.1.))
> - it was relatively easy to get plots of percentiles in both packages, although they were far not the same (I also tried an other software, LMSchartmaker it gave different results from the previous ones)
> - I tried to get tables of predicted values (with the predict function in VGAM and with centiles.pre in gamlss) but without any success.
> - I tried to use the function gamlss() instead of lms() in gamlss but I could not force them to give the same (or very similar results), but the centiles.pred() function did work as expected for the model resulted from galmss()
> - lms gives really different results if k is specified different ways, which is "best"?
>
> Also I have a general question: some publications state they estimated the centiles so that aroun 18 years of age the curves pass through certain points. How is that possible?
>
> Thank you for any suggestions or insights about the methods or preferred package!
>
> Here is my code (without data):
>
> #####gamlss
> library(gamlss)
> library(VGAM)
> library(foreign)
> adatok <- read.spss("MDSZ adatok.sav", to.data.frame=TRUE)
>
> adatok_fiu <- subset(adatok, adatok$gender == "Fiúk")[,2:3]
> row.names(adatok_fiu) <- NULL
> adatok_lany <- subset(adatok, adatok$gender == "L÷nyok")[,2:3]
> row.names(adatok_lany) <- NULL
>
> m1 <- lms(BMI,age,data=adatok_fiu, cent=c(3,10,25,50,75,90,97), families="BCCG")
> fittedPlot(m1, x=adatok_fiu$age)
> m1 <- lms(BMI,age,data=adatok_fiu, cent=c(3,10,25,50,75,90,97), families="BCCG", method.pb="GAIC", k=log(1455))
> fittedPlot(m1, x=adatok_fiu$age)
> m1 <- lms(BMI,age,data=adatok_fiu, cent=c(3,10,25,50,75,90,97), families="BCCG", method.pb="GAIC")
> fittedPlot(m1, x=adatok_fiu$age)
>
> m2 <- lms(BMI,age,data=adatok_lany, cent=c(3,10,25,50,75,90,97), families="BCCG")
> m2 <- lms(BMI,age,data=adatok_lany, cent=c(3,10,25,50,75,90,97), families="BCCG", method.pb="GAIC", k=log(1144))
> m2 <- lms(BMI,age,data=adatok_lany, cent=c(3,10,25,50,75,90,97), families="BCCG", method.pb="GAIC")
>
> m3 <- gamlss(BMI~age, family=BCT, data=adatok_fiu)
> centiles(m3,xvar=adatok_fiu$age, cent=c(3,10,25,50,75,90,97))
>
> newx <- seq(12,20,.5)
>
> centiles.pred(m1, xname="age", xvalues=newx)
> centiles.pred(m3, xname="age", xvalues=newx)
> centiles(m1,adatok_fiu$age)
>
> #####VGAM
> library(foreign)
> library(VGAM)
> library(VGAMdata)
>
> adatok <- read.spss("MDSZ adatok.sav", to.data.frame=TRUE)
>
> adatok_fiu <- subset(adatok, adatok$gender == "Fiúk")
> adatok_lany <- subset(adatok, adatok$gender == "L÷nyok")
>
> fit1 <- vgam(BMI ~ s(age), lms.bcn(percentiles = c(3, 10, 25, 50, 75, 90, 97)), adatok_fiu)
> fit2 <- vgam(BMI ~ s(age), lms.bcn(percentiles = c(3, 10, 25, 50, 75, 90, 97)), adatok_lany)
>
> qtplot(fit1, percentiles = c(3, 10, 25, 50, 75, 90, 97), xlim = c(10.5, 20.5), ylim=c(13,34),
> las = 1, ylab = "BMI", lcol = 4, pch=NA)
>
> qtplot(fit2, percentiles = c(3, 10, 25, 50, 75, 90, 97), xlim = c(10.5, 20.5), ylim=c(13,34),
> las = 1, ylab = "BMI", lcol = 3, add=TRUE, pch=NA, label=FALSE)
>
>
> Thank you:
> Daniel
>
> [[alternative HTML version deleted]]
>
>
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
==============================================
Vito M.R. Muggeo
Dip.to Sc Statist e Matem `Vianelli'
Università di Palermo
viale delle Scienze, edificio 13
90128 Palermo - ITALY
tel: 091 23895240
fax: 091 485726
http://dssm.unipa.it/vmuggeo
28th IWSM
International Workshop on Statistical Modelling
July 8-12, 2013, Palermo
http://iwsm2013.unipa.it
More information about the R-help
mailing list