[R] tune an support vector machine
Uwe Bohne
balu555 at gmx.de
Fri Dec 6 14:06:26 CET 2013
Hej all,
actually i try to tune a SVM in R and use the package "e1071" wich works
pretty well.
I do some gridsearch in the parameters and get the best possible parameters
for classification.
Here is my sample code
type<-sample(c(-1,1) , 20, replace = TRUE )
weight<-sample(c(20:50),20, replace=TRUE)
height<-sample(c(100:200),20, replace=TRUE)
width<-sample(c(30:50),20,replace=TRUE)
volume<-sample(c(1000:5000),20,replace=TRUE)
data<-cbind(type,weight,height,width,volume)
train<-as.data.frame(data)
library("e1071")
features <- c("weight","height","width","volume")
(formula<-as.formula(paste("type ~ ", paste(features, collapse= "+"))))
svmtune=tune.svm(formula, data=train, kernel="radial", cost=2^(-2:5),
gamma=2^(-2:1),cross=10)
summary(svmtune)
My question is if there is a way to tune the features.
So in other words - what i wanna do is to try all possible combinations of
features : for example use only (volume) or use (weight, height) or use
(height,volume,width) and so on for the SVM and to get the best combination
back.
Best wishes
Uwe
More information about the R-help
mailing list