[R] How can I make my functions run faster

Laz lmramba at ufl.edu
Mon Aug 19 16:34:52 CEST 2013


Yes Bert, I am a beginner in writing R functions. I just don't know what 
to avoid or what to use in order to make the R functions faster.

When I run the individual functions, they run quite well.
However, calling all of them using the final function it becomes too slow.

So I don't know how to make it faster.
I used system.time()

Regards,
Laz


On 8/19/2013 10:13 AM, Bert Gunter wrote:
> ... and read the "R Language Definition" manual. I noticed unnecessary
> constructs
> (e.g., z <- f(something); return(z)) that suggest you have more basics
> to learn to write efficient, well-structured R code.
>
> -- Bert
>
> On Mon, Aug 19, 2013 at 3:55 AM, Michael Dewey <info at aghmed.fsnet.co.uk> wrote:
>> At 10:28 19/08/2013, Laz wrote:
>>> Dear R users,
>>>
>>> I have written a couple of R functions, some are through the help of the R
>>> group members. However, running them takes days instead of minutes or a few
>>> hours. I am wondering whether there is a quick way of doing that.
>>
>> Your example code is rather long for humans to profile. Have you thought of
>> getting R to tell where it is spending most time? The R extensions manual
>> tells you how to do this.
>>
>>
>>> Here are all my R functions. The last one calls almost all of the previous
>>> functions. It is the one I am interested in most. It gives me the correct
>>> output but it takes several days to run only 1000 or 2000 simulations!
>>> e.g. system.time(test1<-finalF(designs=5,swaps=20));test1
>>> will take about 20 minutes to run but
>>> system.time(test1<-finalF(designs=5,swaps=50));test1 takes about 10 hours
>>> and system.time(test1<-finalF(designs=25,swaps=2000));test1 takes about 3
>>> days to run
>>>
>>> Here are my functions
>>>
>>>
>>> #####################################################################
>>>
>>> ls() # list all existing objects
>>> rm(list = ls()) # remove them all
>>> rm(list = ls()[!grepl("global.var.A", ls())])
>>> # refresh memory
>>> gc()
>>> ls()
>>>
>>> ### Define a function that requires useful input from the user
>>> #b=4;g=seq(1,20,1);rb=5;cb=4;s2e=1; r=10;c=8
>>>
>>> #####################################
>>> ####################################
>>> # function to calculate heritability
>>> herit<-function(varG,varR=1)
>>> {
>>>    h<-4*varG/(varG+varR)
>>>    return(c(heritability=h))
>>> }
>>>
>>> ###################################
>>> # function to calculate random error
>>> varR<-function(varG,h2)
>>> {
>>>    varR<- varG*(4-h2)/h2
>>>    return(c(random_error=varR))
>>> }
>>>
>>> ##########################################
>>> # function to calculate treatment variance
>>> varG<-function(varR=1,h2)
>>> {
>>>    varG<-varR*h2/(4-h2)
>>>    return(c(treatment_variance=varG))
>>> }
>>>
>>>
>>> ###############################
>>>
>>> # calculating R inverse from spatial data
>>> rspat<-function(rhox=0.6,rhoy=0.6)
>>> {
>>>    s2e<-1
>>>    R<-s2e*eye(N)
>>>    for(i in 1:N) {
>>>      for (j in i:N){
>>>        y1<-y[i]
>>>        y2<-y[j]
>>>        x1<-x[i]
>>>        x2<-x[j]
>>>        R[i,j]<-s2e*(rhox^abs(x2-x1))*(rhoy^abs(y2-y1)) # Core AR(1)*AR(1)
>>>        R[j,i]<-R[i,j]
>>>      }
>>>    }
>>>    IR<-solve(R)
>>>    IR
>>> }
>>>
>>> ped<<-read.table("ped2new.txt",header=FALSE)
>>> # Now work on the pedigree
>>> ## A function to return Zinverse from pedigree
>>>
>>> ZGped<-function(ped)
>>> {
>>>    ped2<-data.frame(ped)
>>>    lenp2<-length(unique(ped2$V1));lenp2 # how many Genotypes in total in
>>> the pedigree =40
>>>    ln2<-length(g);ln2#ln2=nrow(matdf)=30
>>>    # calculate the new Z
>>>    Zped<-model.matrix(~ matdf$genotypes -1)# has order N*t = 180 by 30
>>>    dif<-(lenp2-ln2);dif # 40-30=10
>>>    #print(c(lenp2,ln2,dif))
>>>    zeromatrix<-zeros(nrow(matdf),dif);zeromatrix # 180 by 10
>>>    Z<-cbind(zeromatrix,Zped) # Design Matrix for random effect (Genotypes):
>>> 180 by 40
>>>    # calculate the new G
>>>    M<-matrix(0,lenp2,lenp2) # 40 by 40
>>>    for (i in 1:nrow(ped2)) { M[ped2[i, 1], ped2[i, 2]] <- ped2[i, 3]  }
>>>    G<-s2g*M # Genetic Variance covariance matrix for pedigree 2: 40 by 40
>>>    IG<-solve(G)
>>>    return(list(IG=IG, Z=Z))
>>> }
>>>
>>> ##########################
>>> ##    Required packages    #
>>> ############################
>>> library(gmp)
>>> library(knitr) # load this packages for publishing results
>>> library(matlab)
>>> library(Matrix)
>>> library(psych)
>>> library(foreach)
>>> library(epicalc)
>>> library(ggplot2)
>>> library(xtable)
>>> library(gdata)
>>> library(gplots)
>>>
>>> #b=6;g=seq(1,30,1);rb=5;cb=6;r=15;c=12;h2=0.3;rhox=0.6;rhoy=0.6;ped=0
>>>
>>> setup<-function(b,g,rb,cb,r,c,h2,rhox=0.6,rhoy=0.6,ped="F")
>>>    {
>>>      # where
>>>      # b   = number of blocks
>>>      # t   = number of treatments per block
>>>      # rb  = number of rows per block
>>>      # cb  = number of columns per block
>>>      # s2g = variance within genotypes
>>>      # h2  = heritability
>>>      # r   = total number of rows for the layout
>>>      # c   = total number of columns for the layout
>>>
>>>      ### Check points
>>>      if(b==" ")
>>>          stop(paste(sQuote("block")," cannot be missing"))
>>>      if(!is.vector(g) | length(g)<3)
>>>          stop(paste(sQuote("treatments")," should be a vector and more than
>>> 2"))
>>>      if(!is.numeric(b))
>>>          stop(paste(sQuote("block"),"is not of class", sQuote("numeric")))
>>>      if(length(b)>1)
>>>          stop(paste(sQuote("block"),"has to be only 1 numeric value"))
>>>      if(!is.whole(b))
>>>          stop(paste(sQuote("block"),"has to be an", sQuote("integer")))
>>>
>>>      ## Compatibility checks
>>>      if(rb*cb !=length(g))
>>>         stop(paste(sQuote("rb x cb")," should be equal to number of
>>> treatment", sQuote("g")))
>>>      if(length(g) != rb*cb)
>>>        stop(paste(sQuote("the number of treatments"), "is not equal to",
>>> sQuote("rb*cb")))
>>>
>>>      ## Generate the design
>>>      g<<-g
>>>      genotypes<-times(b) %do% sample(g,length(g))
>>>      #genotypes<-rep(g,b)
>>>      block<-rep(1:b,each=length(g))
>>>      genotypes<-factor(genotypes)
>>>      block<-factor(block)
>>>
>>>      ### generate the base design
>>>      k<-c/cb # number of blocks on the x-axis
>>>      x<<-rep(rep(1:r,each=cb),k)  # X-coordinate
>>>
>>>      #w<-rb
>>>      l<-cb
>>>      p<-r/rb
>>>      m<-l+1
>>>      d<-l*b/p
>>>      y<<-c(rep(1:l,r),rep(m:d,r)) # Y-coordinate
>>>
>>>      ## compact
>>>      matdf<<-data.frame(x,y,block,genotypes)
>>>      N<<-nrow(matdf)
>>>      mm<-summ(matdf)
>>>      ss<-des(matdf)
>>>
>>>      ## Identity matrices
>>>      X<<-model.matrix(~block-1)
>>>      h2<<-h2;rhox<<-rhox;rhoy<<-rhoy
>>>      s2g<<-varG(varR=1,h2)
>>>      ## calculate G and Z
>>>      ifelse(ped == "F",
>>> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~matdf$genotypes-1)),
>>> c(IG<<- ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>>>      ## calculate R and IR
>>>      s2e<-1
>>>      ifelse(rhox==0 | rhoy==0, IR<<-(1/s2e)*eye(N),
>>> IR<<-rspat(rhox=rhox,rhoy=rhoy))
>>>      C11<-t(X)%*%IR%*%X
>>>      C11inv<-solve(C11)
>>>      K<<-IR%*%X%*%C11inv%*%t(X)%*%IR
>>>        return(list(matdf=matdf,summary=mm,description=ss))
>>>
>>>    }
>>>
>>>
>>> #setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>>>
>>> #system.time(out3<-setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F"));out3
>>>
>>> #system.time(out4<-setup(b=16,g=seq(1,196,1),rb=14,cb=14,r=56,c=56,h2=0.3,rhox=0.6,rhoy=0.6,ped="F"));out4
>>>
>>>
>>> ####################################################
>>> # The function below uses shortcuts from  textbook by Harville 1997
>>> # uses inverse of a partitioned matrix technique
>>> ####################################################
>>>
>>> mainF<-function(criteria=c("A","D"))
>>> {
>>>    ### Variance covariance matrices
>>>    temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>>>    C22<-solve(temp)
>>>    ##########################
>>>    ##   Optimality Criteria
>>>    #########################
>>>    traceI<<-sum(diag(C22)) ## A-Optimality
>>>    doptimI<<-log(det(C22)) # D-Optimality: minimize the det of the inverse
>>> of Inform Matrix
>>>    #return(c(traceI,doptimI))
>>>        if(criteria=="A") return(traceI)
>>>        if(criteria=="D") return(doptimI)
>>>    else{return(c(traceI,doptimI))}
>>> }
>>>
>>> # system.time(res1<-mainF(criteria="A"));res1
>>> # system.time(res2<-mainF(criteria="D"));res2
>>> #system.time(res3<-mainF(criteria="both"));res3
>>>
>>>
>>> ##############################################
>>> ### Swap function that takes matdf and returns
>>> ## global values newnatdf and design matrices
>>> ###    Z and IG
>>> ##############################################
>>>
>>> swapsimple<-function(matdf,ped="F")
>>> {
>>>    # dataset D =mat1 generated from the above function
>>>    ## now, new design after swapping is
>>>    matdf<-as.data.frame(matdf)
>>>    attach(matdf,warn.conflict=FALSE)
>>>    b1<-sample(matdf$block,1,replace=TRUE);b1
>>>    gg1<-matdf$genotypes[block==b1];gg1
>>>    g1<-sample(gg1,2);g1
>>>    samp<-Matrix(c(g1=g1,block=b1),nrow=1,ncol=3,
>>>                 dimnames=list(NULL,c("gen1","gen2","block")));samp
>>>    newGen<-matdf$genotypes
>>>    newG<-ifelse(matdf$genotypes==samp[,1] &
>>> block==samp[,3],samp[,2],matdf$genotypes)
>>>    NewG<-ifelse(matdf$genotypes==samp[,2] & block==samp[,3],samp[,1],newG)
>>>    NewG<-factor(NewG)
>>>
>>>    ## now, new design after swapping is
>>>    newmatdf<-cbind(matdf,NewG)
>>>    newmatdf<<-as.data.frame(newmatdf)
>>>    mm<-summ(newmatdf)
>>>    ss<-des(newmatdf)
>>>
>>>    ## Identity matrices
>>>     ifelse(ped == "F",
>>> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~newmatdf$NewG-1)), c(IG<<-
>>> ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>>>    ## calculate R and IR
>>>    C11<-t(X)%*%IR%*%X
>>>    C11inv<-solve(C11)
>>>    K<<-IR%*%X%*%C11inv%*%t(X)%*%IR
>>>    return(list(newmatdf=newmatdf,summary=mm,description=ss))
>>> }
>>> #swapsimple(matdf,ped="F")[c(2,3)]
>>> #which(newmatdf$genotypes != newmatdf$NewG)
>>> ###########################################
>>> # for one design, swap pairs of treatments
>>> # several times and store the traces
>>> # of the successive swaps
>>> ##########################################
>>>
>>> optmF<-function(iterations=2,verbose=FALSE)
>>> {
>>>    trace<-c()
>>>
>>>    for (k in 1:iterations){
>>>
>>> setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")
>>>      swapsimple(matdf,ped="F")
>>>      trace[k]<-mainF(criteria="A")
>>>      iterations[k]<-k
>>>      mat<-cbind(trace, iterations= seq(iterations))
>>>     }
>>>
>>>    if (verbose){
>>>       cat("***starting matrix\n")
>>>       print(mat)
>>>     }
>>>    # iterate till done
>>>    while(nrow(mat) > 1){
>>>      high <- diff(mat[, 'trace']) > 0
>>>      if (!any(high)) break  # done
>>>      # find which one to delete
>>>      delete <- which.max(high) + 1L
>>>      #mat <- mat[-delete, ]
>>>      mat <- mat[-delete,, drop=FALSE]
>>>    }
>>>    mat
>>> }
>>>
>>> #system.time(test1<-optmF(iterations=10));test1
>>>
>>> ################################################
>>> ###############################################
>>>
>>> swap<-function(matdf,ped="F",criteria=c("A","D"))
>>> {
>>>    # dataset D =mat1 generated from the above function
>>>    ## now, new design after swapping is
>>>    matdf<-as.data.frame(matdf)
>>>    attach(matdf,warn.conflict=FALSE)
>>>    b1<-sample(matdf$block,1,replace=TRUE);b1
>>>    gg1<-matdf$genotypes[block==b1];gg1
>>>    g1<-sample(gg1,2);g1
>>>    samp<-Matrix(c(g1=g1,block=b1),nrow=1,ncol=3,
>>>                 dimnames=list(NULL,c("gen1","gen2","block")));samp
>>>    newGen<-matdf$genotypes
>>>    newG<-ifelse(matdf$genotypes==samp[,1] &
>>> block==samp[,3],samp[,2],matdf$genotypes)
>>>    NewG<-ifelse(matdf$genotypes==samp[,2] & block==samp[,3],samp[,1],newG)
>>>    NewG<-factor(NewG)
>>>
>>>    ## now, new design after swapping is
>>>    newmatdf<-cbind(matdf,NewG)
>>>    newmatdf<<-as.data.frame(newmatdf)
>>>    mm<-summ(newmatdf)
>>>    ss<-des(newmatdf)
>>>
>>>    ## Identity matrices
>>>    #X<<-model.matrix(~block-1)
>>>    #s2g<<-varG(varR=1,h2)
>>>    ## calculate G and Z
>>>    ifelse(ped == "F",
>>> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~newmatdf$NewG-1)), c(IG<<-
>>> ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>>>    ## calculate R and IR
>>>    C11<-t(X)%*%IR%*%X
>>>    C11inv<-solve(C11)
>>>    K<-IR%*%X%*%C11inv%*%t(X)%*%IR
>>>    temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>>>    C22<-solve(temp)
>>>    ##########################
>>>    ##   Optimality Criteria
>>>    #########################
>>>    traceI<-sum(diag(C22)) ## A-Optimality
>>>    doptimI<-log(det(C22)) #
>>>    #return(c(traceI,doptimI))
>>>    if(criteria=="A") return(traceI)
>>>    if(criteria=="D") return(doptimI)
>>>    else{return(c(traceI,doptimI))}
>>> }
>>>
>>> #swap(matdf,ped="F",criteria="both")
>>>
>>> ###########################################
>>> ### Generate 25 initial designs
>>> ###########################################
>>> #rspatf<-function(design){
>>> #  arr = array(1, dim=c(nrow(matdf),ncol(matdf)+1,design))
>>> #  l<-list(length=dim(arr)[3])
>>> #  for (i in 1:dim(arr)[3]){
>>> #    l[[i]]<-swapsimple(matdf,ped="F")[[1]][,,i]
>>> #  }
>>> #  l
>>> #}
>>> #matd<-rspatf(design=5)
>>> #matd
>>>
>>> #which(matd[[1]]$genotypes != matd[[1]]$NewG)
>>> #which(matd[[2]]$genotypes != matd[[2]]$NewG)
>>>
>>>
>>> ###############################################
>>> ###############################################
>>>
>>> optm<-function(iterations=2,verbose=FALSE)
>>> {
>>>    trace<-c()
>>>
>>>    for (k in 1:iterations){
>>>
>>> setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")
>>>      trace[k]<-swap(matdf,ped="F",criteria="A")
>>>      iterations[k]<-k
>>>      mat<-cbind(trace, iterations= seq(iterations))
>>>    }
>>>
>>>    if (verbose){
>>>      cat("***starting matrix\n")
>>>      print(mat)
>>>    }
>>>    # iterate till done
>>>    while(nrow(mat) > 1){
>>>      high <- diff(mat[, 'trace']) > 0
>>>      if (!any(high)) break  # done
>>>      # find which one to delete
>>>      delete <- which.max(high) + 1L
>>>      #mat <- mat[-delete, ]
>>>      mat <- mat[-delete,, drop=FALSE]
>>>    }
>>>    mat
>>> }
>>>
>>> #system.time(res<-optm(iterations=10));res
>>> #################################################
>>> ################################################
>>> finalF<-function(designs,swaps)
>>> {
>>>    Nmatdf<-list()
>>>    OP<-list()
>>>    Miny<-NULL
>>>    Maxy<-NULL
>>>    Minx<-NULL
>>>    Maxx<-NULL
>>>    for (i in 1:designs)
>>>    {
>>>
>>> setup(b=4,g=seq(1,20,1),rb=5,cb=4,r=10,c=8,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>>>      mainF(criteria="A")
>>>      for (j in 1:swaps)
>>>      {
>>>        OP[[i]]<- optmF(iterations=swaps)
>>>        Nmatdf[[i]]<-newmatdf[,5]
>>>        Miny[i]<-min(OP[[i]][,1])
>>>        Maxy[i]<-max(OP[[i]][,1])
>>>        Minx[i]<-min(OP[[i]][,2])
>>>        Maxx[i]<-max(OP[[i]][,2])
>>>      }
>>>    }
>>> return(list(OP=OP,Miny=Miny,Maxy=Maxy,Minx=Minx,Maxx=Maxx,Nmatdf=Nmatdf))
>>> # gives us both the Optimal conditions and designs
>>> }
>>>
>>> #################################################
>>> sink(file= paste(format(Sys.time(),
>>> "Final_%a_%b_%d_%Y_%H_%M_%S"),"txt",sep="."),split=TRUE)
>>> system.time(test1<-finalF(designs=25,swaps=2000));test1
>>> sink()
>>>
>>>
>>> I expect results like this below
>>>
>>>> sink()
>>>> finalF<-function(designs,swaps)
>>> +{
>>> +   Nmatdf<-list()
>>> +   OP<-list()
>>> +   Miny<-NULL
>>> +   Maxy<-NULL
>>> +   Minx<-NULL
>>> +   Maxx<-NULL
>>> +   for (i in 1:designs)
>>> +   {
>>> +
>>> setup(b=4,g=seq(1,20,1),rb=5,cb=4,r=10,c=8,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>>> +     mainF(criteria="A")
>>> +     for (j in 1:swaps)
>>> +     {
>>> +       OP[[i]]<- optmF(iterations=swaps)
>>> +       Nmatdf[[i]]<-newmatdf[,5]
>>> +       Miny[i]<-min(OP[[i]][,1])
>>> +       Maxy[i]<-max(OP[[i]][,1])
>>> +       Minx[i]<-min(OP[[i]][,2])
>>> +       Maxx[i]<-max(OP[[i]][,2])
>>> +     }
>>> +   }
>>> +
>>> return(list(OP=OP,Miny=Miny,Maxy=Maxy,Minx=Minx,Maxx=Maxx,Nmatdf=Nmatdf)) #
>>> gives us both the Optimal conditions and designs
>>> +}
>>>> sink(file= paste(format(Sys.time(),
>>>> "Final_%a_%b_%d_%Y_%H_%M_%S"),"txt",sep="."),split=TRUE)
>>>> system.time(test1<-finalF(designs=5,swaps=5));test1
>>>     user  system elapsed
>>>    37.88    0.00   38.04
>>> $OP
>>> $OP[[1]]
>>>           trace iterations
>>> [1,] 0.8961335          1
>>> [2,] 0.8952822          3
>>> [3,] 0.8934649          4
>>>
>>> $OP[[2]]
>>>          trace iterations
>>> [1,] 0.893955          1
>>>
>>> $OP[[3]]
>>>           trace iterations
>>> [1,] 0.9007225          1
>>> [2,] 0.8971837          4
>>> [3,] 0.8902474          5
>>>
>>> $OP[[4]]
>>>           trace iterations
>>> [1,] 0.8964726          1
>>> [2,] 0.8951722          4
>>>
>>> $OP[[5]]
>>>           trace iterations
>>> [1,] 0.8973285          1
>>> [2,] 0.8922594          4
>>>
>>>
>>> $Miny
>>> [1] 0.8934649 0.8939550 0.8902474 0.8951722 0.8922594
>>>
>>> $Maxy
>>> [1] 0.8961335 0.8939550 0.9007225 0.8964726 0.8973285
>>>
>>> $Minx
>>> [1] 1 1 1 1 1
>>>
>>> $Maxx
>>> [1] 4 1 5 4 4
>>>
>>> $Nmatdf
>>> $Nmatdf[[1]]
>>>    [1] 30 8  5  28 27 29 1  26 24 22 13 6  17 18 2  19 14 11 3  23 10 15 21
>>> 9  25 4  7  20 12 16 14 17 15 5  8  6  19
>>>   [38] 4  1  10 11 3  24 20 13 2  27 12 16 28 21 23 30 25 29 7  26 18 9  22
>>> 24 21 26 2  13 30 5  28 20 11 3  7  18 25
>>>   [75] 22 16 4  17 19 27 29 10 23 6  12 15 14 1  9  8  12 11 3  8  5  20 23
>>> 22 7  15 19 29 24 27 13 2  6  1  21 26 25
>>> [112] 10 16 14 18 4  30 17 9  28 29 9  7  27 11 2  30 18 8  14 19 20 15 21
>>> 4  3  16 24 13 28 26 10 12 6  5  25 1  17
>>> [149] 23 22 21 2  23 16 4  10 9  22 30 24 1  27 3  20 12 5  26 17 28 11 7
>>> 14 8  25 19 13 18 29 15 6
>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>>> 26 27 28 29 30
>>>
>>> $Nmatdf[[2]]
>>>    [1] 5  13 30 2  21 23 6  27 16 19 8  26 18 4  20 9  22 28 7  3  15 10 11
>>> 17 25 24 29 1  14 12 28 18 23 19 21 16 17
>>>   [38] 29 13 7  15 27 25 22 10 1  2  5  30 9  20 3  14 24 26 4  6  12 11 8
>>> 8  18 25 12 5  23 21 4  9  17 20 1  2  6
>>>   [75] 22 7  16 26 30 29 3  15 19 14 13 11 24 28 27 10 16 21 26 23 25 4  9
>>> 24 15 14 22 1  20 27 2  7  17 18 13 8  12
>>> [112] 5  6  19 28 3  10 30 11 29 11 30 14 9  26 5  1  10 29 28 4  18 8  24
>>> 20 13 3  23 27 6  15 16 21 2  17 7  25 12
>>> [149] 19 22 7  28 8  11 26 24 12 29 9  16 21 27 22 23 18 19 13 6  15 3  1
>>> 30 2  17 14 5  25 20 4  10
>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>>> 26 27 28 29 30
>>>
>>> $Nmatdf[[3]]
>>>    [1] 7  25 4  30 12 11 14 13 26 1  10 21 15 22 29 19 27 16 2  24 28 20 3
>>> 5  23 8  18 6  17 9  6  21 9  15 11 17 13
>>>   [38] 29 24 4  20 7  23 14 2  16 18 26 19 25 8  1  12 10 28 27 22 30 5  3
>>> 20 12 8  2  11 18 24 19 9  22 15 7  30 27
>>>   [75] 17 29 6  3  5  1  21 25 28 14 23 4  16 26 13 10 20 29 26 25 15 22 9
>>> 10 28 17 18 21 6  16 7  1  3  24 11 2  4
>>> [112] 14 8  5  13 27 23 30 19 12 6  30 1  2  7  28 18 8  20 10 4  25 14 19
>>> 27 11 13 29 12 9  3  26 22 21 16 15 17 24
>>> [149] 5  23 17 6  25 11 21 29 5  26 13 7  15 2  9  4  18 30 3  8  20 24 27
>>> 22 19 16 28 12 1  23 14 10
>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>>> 26 27 28 29 30
>>>
>>> $Nmatdf[[4]]
>>>    [1] 24 8  17 30 10 20 4  28 25 16 14 13 7  12 26 29 21 19 1  22 11 6  23
>>> 18 15 5  27 2  3  9  1  24 27 15 26 14 28
>>>   [38] 20 8  5  4  29 2  25 9  13 6  21 7  22 30 17 3  10 12 19 11 18 16 23
>>> 25 18 3  29 1  4  8  6  9  30 2  14 11 16
>>>   [75] 23 13 10 12 7  19 17 5  21 28 24 20 15 27 26 22 14 5  7  6  17 3  1
>>> 29 25 23 19 11 21 18 4  30 20 8  2  12 9
>>> [112] 16 10 15 27 26 13 24 28 22 19 7  17 1  12 8  18 16 14 22 3  28 27 25
>>> 10 6  4  15 30 9  11 5  20 26 24 29 21 2
>>> [149] 23 13 2  16 10 25 18 15 26 22 12 19 30 17 23 8  3  7  20 14 13 28 9
>>> 21 11 29 6  5  4  24 27 1
>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>>> 26 27 28 29 30
>>>
>>> $Nmatdf[[5]]
>>>    [1] 12 18 8  22 9  21 2  1  29 13 30 25 17 6  16 5  26 7  3  14 23 15 28
>>> 27 10 24 20 11 19 4  20 30 14 27 25 4  6
>>>   [38] 28 23 8  9  29 26 19 24 7  5  1  11 22 21 2  10 18 12 15 3  17 13 16
>>> 16 22 6  9  21 5  14 2  30 10 3  25 27 15
>>>   [75] 28 7  17 20 11 8  19 29 12 26 24 13 1  4  18 23 4  16 10 25 5  13 18
>>> 19 22 7  28 30 23 21 11 2  14 9  20 24 8
>>> [112] 17 1  15 29 6  12 27 3  26 14 8  26 6  20 9  15 23 3  22 7  30 25 24
>>> 1  10 19 21 4  11 2  18 17 13 28 29 27 16
>>> [149] 12 5  19 2  4  5  15 21 17 7  25 8  6  16 20 29 10 18 1  12 26 28 27
>>> 11 14 23 22 9  3  13 30 24
>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>>> 26 27 28 29 30
>>>
>>>
>> Michael Dewey
>> info at aghmed.fsnet.co.uk
>> http://www.aghmed.fsnet.co.uk/home.html
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>
>



More information about the R-help mailing list