[R] How can I make my functions run faster

Michael Dewey info at aghmed.fsnet.co.uk
Mon Aug 19 12:55:47 CEST 2013


At 10:28 19/08/2013, Laz wrote:
>Dear R users,
>
>I have written a couple of R functions, some are through the help of 
>the R group members. However, running them takes days instead of 
>minutes or a few hours. I am wondering whether there is a quick way 
>of doing that.

Your example code is rather long for humans to profile. Have you 
thought of getting R to tell where it is spending most time? The R 
extensions manual tells you how to do this.


>Here are all my R functions. The last one calls almost all of the 
>previous functions. It is the one I am interested in most. It gives 
>me the correct output but it takes several days to run only 1000 or 
>2000 simulations!
>e.g. system.time(test1<-finalF(designs=5,swaps=20));test1
>will take about 20 minutes to run but 
>system.time(test1<-finalF(designs=5,swaps=50));test1 takes about 10 
>hours and system.time(test1<-finalF(designs=25,swaps=2000));test1 
>takes about 3 days to run
>
>Here are my functions
>
>
>#####################################################################
>
>ls() # list all existing objects
>rm(list = ls()) # remove them all
>rm(list = ls()[!grepl("global.var.A", ls())])
># refresh memory
>gc()
>ls()
>
>### Define a function that requires useful input from the user
>#b=4;g=seq(1,20,1);rb=5;cb=4;s2e=1; r=10;c=8
>
>#####################################
>####################################
># function to calculate heritability
>herit<-function(varG,varR=1)
>{
>   h<-4*varG/(varG+varR)
>   return(c(heritability=h))
>}
>
>###################################
># function to calculate random error
>varR<-function(varG,h2)
>{
>   varR<- varG*(4-h2)/h2
>   return(c(random_error=varR))
>}
>
>##########################################
># function to calculate treatment variance
>varG<-function(varR=1,h2)
>{
>   varG<-varR*h2/(4-h2)
>   return(c(treatment_variance=varG))
>}
>
>
>###############################
>
># calculating R inverse from spatial data
>rspat<-function(rhox=0.6,rhoy=0.6)
>{
>   s2e<-1
>   R<-s2e*eye(N)
>   for(i in 1:N) {
>     for (j in i:N){
>       y1<-y[i]
>       y2<-y[j]
>       x1<-x[i]
>       x2<-x[j]
>       R[i,j]<-s2e*(rhox^abs(x2-x1))*(rhoy^abs(y2-y1)) # Core AR(1)*AR(1)
>       R[j,i]<-R[i,j]
>     }
>   }
>   IR<-solve(R)
>   IR
>}
>
>ped<<-read.table("ped2new.txt",header=FALSE)
># Now work on the pedigree
>## A function to return Zinverse from pedigree
>
>ZGped<-function(ped)
>{
>   ped2<-data.frame(ped)
>   lenp2<-length(unique(ped2$V1));lenp2 # how many Genotypes in 
> total in the pedigree =40
>   ln2<-length(g);ln2#ln2=nrow(matdf)=30
>   # calculate the new Z
>   Zped<-model.matrix(~ matdf$genotypes -1)# has order N*t = 180 by 30
>   dif<-(lenp2-ln2);dif # 40-30=10
>   #print(c(lenp2,ln2,dif))
>   zeromatrix<-zeros(nrow(matdf),dif);zeromatrix # 180 by 10
>   Z<-cbind(zeromatrix,Zped) # Design Matrix for random effect 
> (Genotypes): 180 by 40
>   # calculate the new G
>   M<-matrix(0,lenp2,lenp2) # 40 by 40
>   for (i in 1:nrow(ped2)) { M[ped2[i, 1], ped2[i, 2]] <- ped2[i, 3]  }
>   G<-s2g*M # Genetic Variance covariance matrix for pedigree 2: 40 by 40
>   IG<-solve(G)
>   return(list(IG=IG, Z=Z))
>}
>
>##########################
>##    Required packages    #
>############################
>library(gmp)
>library(knitr) # load this packages for publishing results
>library(matlab)
>library(Matrix)
>library(psych)
>library(foreach)
>library(epicalc)
>library(ggplot2)
>library(xtable)
>library(gdata)
>library(gplots)
>
>#b=6;g=seq(1,30,1);rb=5;cb=6;r=15;c=12;h2=0.3;rhox=0.6;rhoy=0.6;ped=0
>
>setup<-function(b,g,rb,cb,r,c,h2,rhox=0.6,rhoy=0.6,ped="F")
>   {
>     # where
>     # b   = number of blocks
>     # t   = number of treatments per block
>     # rb  = number of rows per block
>     # cb  = number of columns per block
>     # s2g = variance within genotypes
>     # h2  = heritability
>     # r   = total number of rows for the layout
>     # c   = total number of columns for the layout
>
>     ### Check points
>     if(b==" ")
>         stop(paste(sQuote("block")," cannot be missing"))
>     if(!is.vector(g) | length(g)<3)
>         stop(paste(sQuote("treatments")," should be a vector and 
> more than 2"))
>     if(!is.numeric(b))
>         stop(paste(sQuote("block"),"is not of class", sQuote("numeric")))
>     if(length(b)>1)
>         stop(paste(sQuote("block"),"has to be only 1 numeric value"))
>     if(!is.whole(b))
>         stop(paste(sQuote("block"),"has to be an", sQuote("integer")))
>
>     ## Compatibility checks
>     if(rb*cb !=length(g))
>        stop(paste(sQuote("rb x cb")," should be equal to number of 
> treatment", sQuote("g")))
>     if(length(g) != rb*cb)
>       stop(paste(sQuote("the number of treatments"), "is not equal 
> to", sQuote("rb*cb")))
>
>     ## Generate the design
>     g<<-g
>     genotypes<-times(b) %do% sample(g,length(g))
>     #genotypes<-rep(g,b)
>     block<-rep(1:b,each=length(g))
>     genotypes<-factor(genotypes)
>     block<-factor(block)
>
>     ### generate the base design
>     k<-c/cb # number of blocks on the x-axis
>     x<<-rep(rep(1:r,each=cb),k)  # X-coordinate
>
>     #w<-rb
>     l<-cb
>     p<-r/rb
>     m<-l+1
>     d<-l*b/p
>     y<<-c(rep(1:l,r),rep(m:d,r)) # Y-coordinate
>
>     ## compact
>     matdf<<-data.frame(x,y,block,genotypes)
>     N<<-nrow(matdf)
>     mm<-summ(matdf)
>     ss<-des(matdf)
>
>     ## Identity matrices
>     X<<-model.matrix(~block-1)
>     h2<<-h2;rhox<<-rhox;rhoy<<-rhoy
>     s2g<<-varG(varR=1,h2)
>     ## calculate G and Z
>     ifelse(ped == "F", 
> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~matdf$genotypes-1)), 
>   c(IG<<- ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>     ## calculate R and IR
>     s2e<-1
>     ifelse(rhox==0 | rhoy==0, IR<<-(1/s2e)*eye(N), 
> IR<<-rspat(rhox=rhox,rhoy=rhoy))
>     C11<-t(X)%*%IR%*%X
>     C11inv<-solve(C11)
>     K<<-IR%*%X%*%C11inv%*%t(X)%*%IR
>       return(list(matdf=matdf,summary=mm,description=ss))
>
>   }
>
>#setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>#system.time(out3<-setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F"));out3
>#system.time(out4<-setup(b=16,g=seq(1,196,1),rb=14,cb=14,r=56,c=56,h2=0.3,rhox=0.6,rhoy=0.6,ped="F"));out4
>
>
>####################################################
># The function below uses shortcuts from  textbook by Harville 1997
># uses inverse of a partitioned matrix technique
>####################################################
>
>mainF<-function(criteria=c("A","D"))
>{
>   ### Variance covariance matrices
>   temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>   C22<-solve(temp)
>   ##########################
>   ##   Optimality Criteria
>   #########################
>   traceI<<-sum(diag(C22)) ## A-Optimality
>   doptimI<<-log(det(C22)) # D-Optimality: minimize the det of the 
> inverse of Inform Matrix
>   #return(c(traceI,doptimI))
>       if(criteria=="A") return(traceI)
>       if(criteria=="D") return(doptimI)
>   else{return(c(traceI,doptimI))}
>}
>
># system.time(res1<-mainF(criteria="A"));res1
># system.time(res2<-mainF(criteria="D"));res2
>#system.time(res3<-mainF(criteria="both"));res3
>
>
>##############################################
>### Swap function that takes matdf and returns
>## global values newnatdf and design matrices
>###    Z and IG
>##############################################
>
>swapsimple<-function(matdf,ped="F")
>{
>   # dataset D =mat1 generated from the above function
>   ## now, new design after swapping is
>   matdf<-as.data.frame(matdf)
>   attach(matdf,warn.conflict=FALSE)
>   b1<-sample(matdf$block,1,replace=TRUE);b1
>   gg1<-matdf$genotypes[block==b1];gg1
>   g1<-sample(gg1,2);g1
>   samp<-Matrix(c(g1=g1,block=b1),nrow=1,ncol=3,
>                dimnames=list(NULL,c("gen1","gen2","block")));samp
>   newGen<-matdf$genotypes
>   newG<-ifelse(matdf$genotypes==samp[,1] & 
> block==samp[,3],samp[,2],matdf$genotypes)
>   NewG<-ifelse(matdf$genotypes==samp[,2] & block==samp[,3],samp[,1],newG)
>   NewG<-factor(NewG)
>
>   ## now, new design after swapping is
>   newmatdf<-cbind(matdf,NewG)
>   newmatdf<<-as.data.frame(newmatdf)
>   mm<-summ(newmatdf)
>   ss<-des(newmatdf)
>
>   ## Identity matrices
>    ifelse(ped == "F", 
> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~newmatdf$NewG-1)), 
> c(IG<<- ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>   ## calculate R and IR
>   C11<-t(X)%*%IR%*%X
>   C11inv<-solve(C11)
>   K<<-IR%*%X%*%C11inv%*%t(X)%*%IR
>   return(list(newmatdf=newmatdf,summary=mm,description=ss))
>}
>#swapsimple(matdf,ped="F")[c(2,3)]
>#which(newmatdf$genotypes != newmatdf$NewG)
>###########################################
># for one design, swap pairs of treatments
># several times and store the traces
># of the successive swaps
>##########################################
>
>optmF<-function(iterations=2,verbose=FALSE)
>{
>   trace<-c()
>
>   for (k in 1:iterations){
>setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")
>     swapsimple(matdf,ped="F")
>     trace[k]<-mainF(criteria="A")
>     iterations[k]<-k
>     mat<-cbind(trace, iterations= seq(iterations))
>    }
>
>   if (verbose){
>      cat("***starting matrix\n")
>      print(mat)
>    }
>   # iterate till done
>   while(nrow(mat) > 1){
>     high <- diff(mat[, 'trace']) > 0
>     if (!any(high)) break  # done
>     # find which one to delete
>     delete <- which.max(high) + 1L
>     #mat <- mat[-delete, ]
>     mat <- mat[-delete,, drop=FALSE]
>   }
>   mat
>}
>
>#system.time(test1<-optmF(iterations=10));test1
>
>################################################
>###############################################
>
>swap<-function(matdf,ped="F",criteria=c("A","D"))
>{
>   # dataset D =mat1 generated from the above function
>   ## now, new design after swapping is
>   matdf<-as.data.frame(matdf)
>   attach(matdf,warn.conflict=FALSE)
>   b1<-sample(matdf$block,1,replace=TRUE);b1
>   gg1<-matdf$genotypes[block==b1];gg1
>   g1<-sample(gg1,2);g1
>   samp<-Matrix(c(g1=g1,block=b1),nrow=1,ncol=3,
>                dimnames=list(NULL,c("gen1","gen2","block")));samp
>   newGen<-matdf$genotypes
>   newG<-ifelse(matdf$genotypes==samp[,1] & 
> block==samp[,3],samp[,2],matdf$genotypes)
>   NewG<-ifelse(matdf$genotypes==samp[,2] & block==samp[,3],samp[,1],newG)
>   NewG<-factor(NewG)
>
>   ## now, new design after swapping is
>   newmatdf<-cbind(matdf,NewG)
>   newmatdf<<-as.data.frame(newmatdf)
>   mm<-summ(newmatdf)
>   ss<-des(newmatdf)
>
>   ## Identity matrices
>   #X<<-model.matrix(~block-1)
>   #s2g<<-varG(varR=1,h2)
>   ## calculate G and Z
>   ifelse(ped == "F", 
> c(IG<<-(1/s2g)*eye(length(g)),Z<<-model.matrix(~newmatdf$NewG-1)), 
> c(IG<<- ZGped(ped)[[1]],Z<<-ZGped(ped)[[2]]))
>   ## calculate R and IR
>   C11<-t(X)%*%IR%*%X
>   C11inv<-solve(C11)
>   K<-IR%*%X%*%C11inv%*%t(X)%*%IR
>   temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>   C22<-solve(temp)
>   ##########################
>   ##   Optimality Criteria
>   #########################
>   traceI<-sum(diag(C22)) ## A-Optimality
>   doptimI<-log(det(C22)) #
>   #return(c(traceI,doptimI))
>   if(criteria=="A") return(traceI)
>   if(criteria=="D") return(doptimI)
>   else{return(c(traceI,doptimI))}
>}
>
>#swap(matdf,ped="F",criteria="both")
>
>###########################################
>### Generate 25 initial designs
>###########################################
>#rspatf<-function(design){
>#  arr = array(1, dim=c(nrow(matdf),ncol(matdf)+1,design))
>#  l<-list(length=dim(arr)[3])
>#  for (i in 1:dim(arr)[3]){
>#    l[[i]]<-swapsimple(matdf,ped="F")[[1]][,,i]
>#  }
>#  l
>#}
>#matd<-rspatf(design=5)
>#matd
>
>#which(matd[[1]]$genotypes != matd[[1]]$NewG)
>#which(matd[[2]]$genotypes != matd[[2]]$NewG)
>
>
>###############################################
>###############################################
>
>optm<-function(iterations=2,verbose=FALSE)
>{
>   trace<-c()
>
>   for (k in 1:iterations){
>setup(b=6,g=seq(1,30,1),rb=5,cb=6,r=15,c=12,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")
>     trace[k]<-swap(matdf,ped="F",criteria="A")
>     iterations[k]<-k
>     mat<-cbind(trace, iterations= seq(iterations))
>   }
>
>   if (verbose){
>     cat("***starting matrix\n")
>     print(mat)
>   }
>   # iterate till done
>   while(nrow(mat) > 1){
>     high <- diff(mat[, 'trace']) > 0
>     if (!any(high)) break  # done
>     # find which one to delete
>     delete <- which.max(high) + 1L
>     #mat <- mat[-delete, ]
>     mat <- mat[-delete,, drop=FALSE]
>   }
>   mat
>}
>
>#system.time(res<-optm(iterations=10));res
>#################################################
>################################################
>finalF<-function(designs,swaps)
>{
>   Nmatdf<-list()
>   OP<-list()
>   Miny<-NULL
>   Maxy<-NULL
>   Minx<-NULL
>   Maxx<-NULL
>   for (i in 1:designs)
>   {
>setup(b=4,g=seq(1,20,1),rb=5,cb=4,r=10,c=8,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>     mainF(criteria="A")
>     for (j in 1:swaps)
>     {
>       OP[[i]]<- optmF(iterations=swaps)
>       Nmatdf[[i]]<-newmatdf[,5]
>       Miny[i]<-min(OP[[i]][,1])
>       Maxy[i]<-max(OP[[i]][,1])
>       Minx[i]<-min(OP[[i]][,2])
>       Maxx[i]<-max(OP[[i]][,2])
>     }
>   }
>return(list(OP=OP,Miny=Miny,Maxy=Maxy,Minx=Minx,Maxx=Maxx,Nmatdf=Nmatdf)) 
># gives us both the Optimal conditions and designs
>}
>
>#################################################
>sink(file= paste(format(Sys.time(), 
>"Final_%a_%b_%d_%Y_%H_%M_%S"),"txt",sep="."),split=TRUE)
>system.time(test1<-finalF(designs=25,swaps=2000));test1
>sink()
>
>
>I expect results like this below
>
>>sink()
>>finalF<-function(designs,swaps)
>+{
>+   Nmatdf<-list()
>+   OP<-list()
>+   Miny<-NULL
>+   Maxy<-NULL
>+   Minx<-NULL
>+   Maxx<-NULL
>+   for (i in 1:designs)
>+   {
>+ 
>setup(b=4,g=seq(1,20,1),rb=5,cb=4,r=10,c=8,h2=0.3,rhox=0.6,rhoy=0.6,ped="F")[1]
>+     mainF(criteria="A")
>+     for (j in 1:swaps)
>+     {
>+       OP[[i]]<- optmF(iterations=swaps)
>+       Nmatdf[[i]]<-newmatdf[,5]
>+       Miny[i]<-min(OP[[i]][,1])
>+       Maxy[i]<-max(OP[[i]][,1])
>+       Minx[i]<-min(OP[[i]][,2])
>+       Maxx[i]<-max(OP[[i]][,2])
>+     }
>+   }
>+ 
>return(list(OP=OP,Miny=Miny,Maxy=Maxy,Minx=Minx,Maxx=Maxx,Nmatdf=Nmatdf)) 
># gives us both the Optimal conditions and designs
>+}
>>sink(file= paste(format(Sys.time(), 
>>"Final_%a_%b_%d_%Y_%H_%M_%S"),"txt",sep="."),split=TRUE)
>>system.time(test1<-finalF(designs=5,swaps=5));test1
>    user  system elapsed
>   37.88    0.00   38.04
>$OP
>$OP[[1]]
>          trace iterations
>[1,] 0.8961335          1
>[2,] 0.8952822          3
>[3,] 0.8934649          4
>
>$OP[[2]]
>         trace iterations
>[1,] 0.893955          1
>
>$OP[[3]]
>          trace iterations
>[1,] 0.9007225          1
>[2,] 0.8971837          4
>[3,] 0.8902474          5
>
>$OP[[4]]
>          trace iterations
>[1,] 0.8964726          1
>[2,] 0.8951722          4
>
>$OP[[5]]
>          trace iterations
>[1,] 0.8973285          1
>[2,] 0.8922594          4
>
>
>$Miny
>[1] 0.8934649 0.8939550 0.8902474 0.8951722 0.8922594
>
>$Maxy
>[1] 0.8961335 0.8939550 0.9007225 0.8964726 0.8973285
>
>$Minx
>[1] 1 1 1 1 1
>
>$Maxx
>[1] 4 1 5 4 4
>
>$Nmatdf
>$Nmatdf[[1]]
>   [1] 30 8  5  28 27 29 1  26 24 22 13 6  17 18 2  19 14 11 3  23 
> 10 15 21 9  25 4  7  20 12 16 14 17 15 5  8  6  19
>  [38] 4  1  10 11 3  24 20 13 2  27 12 16 28 21 23 30 25 29 7  26 
> 18 9  22 24 21 26 2  13 30 5  28 20 11 3  7  18 25
>  [75] 22 16 4  17 19 27 29 10 23 6  12 15 14 1  9  8  12 11 
> 3  8  5  20 23 22 7  15 19 29 24 27 13 2  6  1  21 26 25
>[112] 10 16 14 18 4  30 17 9  28 29 9  7  27 11 2  30 18 8  14 19 20 
>15 21 4  3  16 24 13 28 26 10 12 6  5  25 1  17
>[149] 23 22 21 2  23 16 4  10 9  22 30 24 1  27 3  20 12 5  26 17 28 
>11 7  14 8  25 19 13 18 29 15 6
>Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
>24 25 26 27 28 29 30
>
>$Nmatdf[[2]]
>   [1] 5  13 30 2  21 23 6  27 16 19 8  26 18 4  20 9  22 28 
> 7  3  15 10 11 17 25 24 29 1  14 12 28 18 23 19 21 16 17
>  [38] 29 13 7  15 27 25 22 10 1  2  5  30 9  20 3  14 24 26 
> 4  6  12 11 8  8  18 25 12 5  23 21 4  9  17 20 1  2  6
>  [75] 22 7  16 26 30 29 3  15 19 14 13 11 24 28 27 10 16 21 26 23 
> 25 4  9  24 15 14 22 1  20 27 2  7  17 18 13 8  12
>[112] 5  6  19 28 3  10 30 11 29 11 30 14 9  26 5  1  10 29 28 4  18 
>8  24 20 13 3  23 27 6  15 16 21 2  17 7  25 12
>[149] 19 22 7  28 8  11 26 24 12 29 9  16 21 27 22 23 18 19 13 6  15 
>3  1  30 2  17 14 5  25 20 4  10
>Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
>24 25 26 27 28 29 30
>
>$Nmatdf[[3]]
>   [1] 7  25 4  30 12 11 14 13 26 1  10 21 15 22 29 19 27 16 2  24 
> 28 20 3  5  23 8  18 6  17 9  6  21 9  15 11 17 13
>  [38] 29 24 4  20 7  23 14 2  16 18 26 19 25 8  1  12 10 28 27 22 
> 30 5  3  20 12 8  2  11 18 24 19 9  22 15 7  30 27
>  [75] 17 29 6  3  5  1  21 25 28 14 23 4  16 26 13 10 20 29 26 25 
> 15 22 9  10 28 17 18 21 6  16 7  1  3  24 11 2  4
>[112] 14 8  5  13 27 23 30 19 12 6  30 1  2  7  28 18 8  20 10 4  25 
>14 19 27 11 13 29 12 9  3  26 22 21 16 15 17 24
>[149] 5  23 17 6  25 11 21 29 5  26 13 7  15 2  9  4  18 30 3  8  20 
>24 27 22 19 16 28 12 1  23 14 10
>Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
>24 25 26 27 28 29 30
>
>$Nmatdf[[4]]
>   [1] 24 8  17 30 10 20 4  28 25 16 14 13 7  12 26 29 21 19 1  22 
> 11 6  23 18 15 5  27 2  3  9  1  24 27 15 26 14 28
>  [38] 20 8  5  4  29 2  25 9  13 6  21 7  22 30 17 3  10 12 19 11 
> 18 16 23 25 18 3  29 1  4  8  6  9  30 2  14 11 16
>  [75] 23 13 10 12 7  19 17 5  21 28 24 20 15 27 26 22 14 
> 5  7  6  17 3  1  29 25 23 19 11 21 18 4  30 20 8  2  12 9
>[112] 16 10 15 27 26 13 24 28 22 19 7  17 1  12 8  18 16 14 22 3  28 
>27 25 10 6  4  15 30 9  11 5  20 26 24 29 21 2
>[149] 23 13 2  16 10 25 18 15 26 22 12 19 30 17 23 8  3  7  20 14 13 
>28 9  21 11 29 6  5  4  24 27 1
>Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
>24 25 26 27 28 29 30
>
>$Nmatdf[[5]]
>   [1] 12 18 8  22 9  21 2  1  29 13 30 25 17 6  16 5  26 7  3  14 
> 23 15 28 27 10 24 20 11 19 4  20 30 14 27 25 4  6
>  [38] 28 23 8  9  29 26 19 24 7  5  1  11 22 21 2  10 18 12 15 
> 3  17 13 16 16 22 6  9  21 5  14 2  30 10 3  25 27 15
>  [75] 28 7  17 20 11 8  19 29 12 26 24 13 1  4  18 23 4  16 10 25 
> 5  13 18 19 22 7  28 30 23 21 11 2  14 9  20 24 8
>[112] 17 1  15 29 6  12 27 3  26 14 8  26 6  20 9  15 23 3  22 7  30 
>25 24 1  10 19 21 4  11 2  18 17 13 28 29 27 16
>[149] 12 5  19 2  4  5  15 21 17 7  25 8  6  16 20 29 10 18 1  12 26 
>28 27 11 14 23 22 9  3  13 30 24
>Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
>24 25 26 27 28 29 30
>
>

Michael Dewey
info at aghmed.fsnet.co.uk
http://www.aghmed.fsnet.co.uk/home.html



More information about the R-help mailing list