[R] lmer( ) parameter estimates changing depending on dummy-coded reference level

Bert Gunter gunter.berton at gene.com
Wed Aug 7 19:14:40 CEST 2013


I think it's fair to say that this should really be posted on the
mixed-model specific (especially using lme4) list r-sig-mixed-models
and not here.

Cheers,
Bert

On Wed, Aug 7, 2013 at 9:01 AM, Alan Mishler <amishler at umd.edu> wrote:
> Hi everyone,
>
> I'm writing with a question about lmer( ) in the lme4 package. I've
> searched around for
> answers and done quite a bit of experimentation with toy data sets to
> figure out my issue, and I haven't been able to resolve it.
>
> I'm running linear mixed effects models on a large, sparse dataset in
> which I'm regressing reaction time (a continuous variable) on several
> categorical factors: Block (Block1/Block2/Block3), Group
> (monolingual/bilingual), and Type (target/nontarget).
>
> As a way of examining simple effects, I am dummy-coding specific
> factors, setting each level of a given factor as the reference level
> in turn. For example, I generate three models with each of the three
> levels of Block coded as the reference level, without changing the
> codings of the other factors:
>
> ## Model with Block 1 as reference level
> contrasts(nback.low$Group) <- c(1, 0) # monoling ref
> contrasts(nback.low$Type) <- c(1, -1)
> contrasts(nback.low$Block) <- matrix(c(0, 1, 0, 0, 0, 1), ncol=2) #B1
> ref, B2: 1, B3: 2
> glmerNL.RS.SI_RTgxb1 <- glmer(WinRTs~(Group*Block*Type) +
> (1+Block+Type|Subject) + (1+Group+Block|Item),data=nback.low)
>
> ## Model with Block 2 as reference level
> contrasts(nback.low$Group) <- c(1, 0) # monoling ref
> contrasts(nback.low$Type) <- c(1, -1)
> contrasts(nback.low$Block) <- matrix(c(1, 0, 0, 0, 0, 1), ncol=2) #B2
> ref, B1: 1, B3: 2
> glmerNL.RS.SI_RTgxb2 <- glmer(WinRTs~(Group*Block*Type) +
> (1+Block+Type|Subject) + (1+Group+Block|Item),data=nback.low)
>
> ## Model with Block 3 as reference level
> contrasts(nback.low$Group) <- c(1, -1) # monoling 'ref'
> contrasts(nback.low$Type) <- c(1, 0) # target ref
> contrasts(nback.low$Block) <- matrix(c(1, 0, 0, 0, 1, 0), ncol=2) #B3
> ref, B1: 1, B2: 2
> glmerNL.RS.SI_RTbxt3 <- glmer(WinRTs~(Group*Block*Type) +
> (1+Block+Type|Subject) + (1+Group+Block|Item),data=nback.low)
> summary(glmerNL.RS.SI_RTbxt3)
>
> The issue I'm having is that contrasts that I believe should be
> identical are not. Below are summaries of the three
> models. You can see that the estimate of the fixed effect of Block1
> (the contrast between Block 1 and Block 2) is -117.98 in the first
> model and 118.478 in the second model. To my understanding, they
> should be identical except for the sign. Similar discrepancies can be
> seen in the other Block contrasts.
>
> There are two subjects who have no data at Block 1, so I removed them
> and re-ran the models, but the same issue occurred. Separately, I
> removed the random effects for Item, without removing those two
> subjects, and when I did that the discrepancies disappeared. I have a
> feeling this means that my models are too complex for my data, but I'm
> not sure what I should look at to (dis)confirm this hunch or how
> exactly to proceed if that is the case. (As an example of the
> sparseness of the data, items are repeated across subjects, but each
> subject has only one data point per item, or zero data points per item
> for trials where they didn't respond correctly. However, I didn't get
> any warnings about model convergence, or any warnings at
> all.)
>
> Any clues  as to why I'm getting this results would be
> very much appreciated.
>
> Thanks in advance,
>
> Alan Mishler
> Research Assistant
> University of Maryland
> --
> ## Model 1 output: Block 1 as reference level ##
>> glmerNL.RS.SI_RTgxb1
> Linear mixed model fit by REML
> Formula: WinRTs ~ (Group * Block * Type) + (1 + Block + Type |
> Subject) +      (1 + Group + Block | Item)
>    Data: nback.low
>     AIC    BIC logLik deviance REMLdev
>  181965 182210 -90949   181990  181899
>
> Random effects:
>  Groups   Name        Variance  Std.Dev. Corr
>  Item     (Intercept)   6134.64  78.324
>           Group1        2336.31  48.335  -1.000
>           Block1        1759.56  41.947   1.000 -1.000
>           Block2         846.06  29.087   0.771 -0.771  0.771
>  Subject  (Intercept) 132462.22 363.954
>           Block1        6011.83  77.536  -0.034
>           Block2       10883.42 104.324  -0.127  0.915
>           Type1        13653.97 116.850  -0.194  0.260  0.109
>  Residual              97048.54 311.526
> Number of obs: 12640, groups: Item, 288; Subject, 52
>
> Fixed effects:
>                     Estimate Std. Error t value
> (Intercept)          1016.73      73.39  13.855
> Group1                 12.39     101.67   0.122
> Block1               -117.98      18.97  -6.220
> Block2               -175.96      23.60  -7.455
> Type1                -136.36      24.96  -5.463
> Group1:Block1          46.43      26.05   1.782
> Group1:Block2          76.70      32.53   2.358
> Group1:Type1           20.55      34.15   0.602
> Block1:Type1           62.16      10.47   5.934
> Block2:Type1           96.66      10.46   9.243
> Group1:Block1:Type1   -18.39      14.05  -1.309
> Group1:Block2:Type1   -39.94      14.13  -2.826
>
> Correlation of Fixed Effects:
>             (Intr) Group1 Block1 Block2 Type1  Gr1:B1 Gr1:B2 Gr1:T1
> Bl1:T1 Bl2:T1 G1:B1:
> Group1      -0.721
> Block1      -0.065  0.049
> Block2      -0.146  0.106  0.815
> Type1       -0.186  0.134  0.219  0.106
> Grop1:Blck1  0.053 -0.074 -0.715 -0.587 -0.160
> Grop1:Blck2  0.108 -0.150 -0.586 -0.721 -0.077  0.818
> Group1:Typ1  0.136 -0.189 -0.160 -0.078 -0.721  0.226  0.110
> Block1:Typ1  0.012 -0.009 -0.086 -0.038 -0.163  0.063  0.028  0.131
> Block2:Typ1  0.013 -0.009 -0.051 -0.070 -0.189  0.037  0.051  0.144
> 0.533
> Grp1:Bl1:T1 -0.009  0.013  0.064  0.028  0.153 -0.090 -0.043 -0.216
> -0.702 -0.371
> Grp1:Bl2:T1 -0.010  0.014  0.038  0.052  0.156 -0.055 -0.072 -0.218
> -0.371 -0.717  0.527
>
> ## Model 2 output: Block 2 as reference level ##
>> glmerNL.RS.SI_RTgxb2 [Block 2 as reference level]
> Linear mixed model fit by REML
> Formula: WinRTs ~ (Group * Block * Type) + (1 + Block + Type |
> Subject) +      (1 + Group + Block | Item)
>    Data: nback.low
>     AIC    BIC logLik deviance REMLdev
>  181931 182177 -90933   181957  181865
>
> Random effects:
>  Groups   Name        Variance  Std.Dev. Corr
>  Item     (Intercept)  14663.50 121.093
>           Group1        2400.09  48.991  -1.000
>           Block1        6561.73  81.004  -0.582  0.582
>           Block2         590.58  24.302  -0.677  0.677 -0.205
>  Subject  (Intercept) 136638.85 369.647
>           Block1        5868.05  76.603  -0.172
>           Block2        2128.70  46.138  -0.146 -0.388
>           Type1        13788.61 117.425  -0.140 -0.259 -0.188
>  Residual              95743.04 309.424
> Number of obs: 12640, groups: Item, 288; Subject, 52
>
> Fixed effects:
>                     Estimate Std. Error t value
> (Intercept)          898.925     74.610  12.048
> Group1                58.779    103.098   0.570
> Block1               118.478     19.267   6.149
> Block2               -58.059     13.680  -4.244
> Type1                -74.323     25.553  -2.909
> Group1:Block1        -46.515     25.799  -1.803
> Group1:Block2         30.232     18.734   1.614
> Group1:Type1           2.166     34.141   0.063
> Block1:Type1         -64.291     11.246  -5.717
> Block2:Type1          33.892     10.045   3.374
> Group1:Block1:Type1   19.392     13.995   1.386
> Group1:Block2:Type1  -21.160     13.634  -1.552
>
> Correlation of Fixed Effects:
>             (Intr) Group1 Block1 Block2 Type1  Gr1:B1 Gr1:B2 Gr1:T1
> Bl1:T1 Bl2:T1 G1:B1:
> Group1      -0.720
> Block1      -0.183  0.126
> Block2      -0.152  0.108 -0.033
> Type1       -0.132  0.096 -0.174 -0.095
> Grop1:Blck1  0.126 -0.176 -0.699  0.019  0.130
> Grop1:Blck2  0.106 -0.147  0.021 -0.722  0.070 -0.030
> Group1:Typ1  0.099 -0.137  0.130  0.071 -0.714 -0.188 -0.102
> Block1:Typ1  0.009 -0.007 -0.079 -0.049 -0.239  0.059  0.036  0.148
> Block2:Typ1  0.010 -0.008 -0.036 -0.107 -0.219  0.027  0.079  0.152
> 0.416
> Grp1:Bl1:T1 -0.008  0.010  0.063  0.040  0.137 -0.092 -0.050 -0.194
> -0.655 -0.345
> Grp1:Bl2:T1 -0.008  0.010  0.026  0.079  0.141 -0.036 -0.101 -0.200
> -0.315 -0.722  0.482
>
> ## Model 3 output: Block 3 as reference level ##
>> glmerNL.RS.SI_RTgxb3 [Block 3 as reference level]
> Linear mixed model fit by REML
> Formula: WinRTs ~ (Group * Block * Type) + (1 + Block + Type |
> Subject) +      (1 + Group + Block | Item)
>    Data: nback.low
>     AIC    BIC logLik deviance REMLdev
>  181932 182177 -90933   181958  181866
>
> Random effects:
>  Groups   Name        Variance  Std.Dev. Corr
>  Item     (Intercept)  11296.69 106.286
>           Group1        2419.00  49.183  -1.000
>           Block1        7418.92  86.133  -0.522  0.522
>           Block2         494.56  22.239   0.596 -0.596  0.373
>  Subject  (Intercept) 133759.20 365.731
>           Block1       10713.51 103.506  -0.153
>           Block2        2123.58  46.082   0.021  0.733
>           Type1        13764.21 117.321  -0.165 -0.107  0.189
>  Residual              95762.39 309.455
> Number of obs: 12640, groups: Item, 288; Subject, 52
>
> Fixed effects:
>                     Estimate Std. Error t value
> (Intercept)           840.86      73.76  11.399
> Group1                 89.07     102.02   0.873
> Block1                176.58      23.92   7.381
> Block2                 58.07      13.66   4.251
> Type1                 -40.40      25.30  -1.597
> Group1:Block1         -76.71      32.29  -2.376
> Group1:Block2         -30.30      18.72  -1.618
> Group1:Type1          -18.88      34.08  -0.554
> Block1:Type1          -98.00      11.46  -8.555
> Block2:Type1          -33.93      10.03  -3.382
> Group1:Block1:Type1    40.12      14.06   2.853
> Group1:Block2:Type1    21.06      13.63   1.545
>
> Correlation of Fixed Effects:
>             (Intr) Group1 Block1 Block2 Type1  Gr1:B1 Gr1:B2 Gr1:T1
> Bl1:T1 Bl2:T1 G1:B1:
> Group1      -0.720
> Block1      -0.170  0.119
> Block2      -0.031  0.024  0.595
> Type1       -0.156  0.113 -0.073  0.138
> Grop1:Blck1  0.119 -0.164 -0.706 -0.434  0.054
> Grop1:Blck2  0.026 -0.034 -0.429 -0.723 -0.101  0.603
> Group1:Typ1  0.116 -0.161  0.054 -0.102 -0.717 -0.079  0.142
> Block1:Typ1  0.009 -0.006 -0.063 -0.045 -0.231  0.047  0.034  0.148
> Block2:Typ1  0.009 -0.007 -0.032 -0.107 -0.177  0.024  0.079  0.138
> 0.461
> Grp1:Bl1:T1 -0.007  0.009  0.052  0.037  0.141 -0.073 -0.048 -0.195
> -0.651 -0.357
> Grp1:Bl2:T1 -0.007  0.009  0.025  0.079  0.144 -0.030 -0.101 -0.200
> -0.324 -0.723  0.490
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



-- 

Bert Gunter
Genentech Nonclinical Biostatistics

Internal Contact Info:
Phone: 467-7374
Website:
http://pharmadevelopment.roche.com/index/pdb/pdb-functional-groups/pdb-biostatistics/pdb-ncb-home.htm



More information about the R-help mailing list