[R] Pls help to prevent my post from being indexed on google
Rolf Turner
rolf.turner at xtra.co.nz
Sun Apr 21 23:22:44 CEST 2013
See also:
fortune("celebrity")
cheers,
Rolf Turner
On 22/04/13 07:32, Joshua Wiley wrote:
> Hi,
>
> No that is not really possible for several reasons. One is that these
> posts are not archived on just one web server. There are multiple
> archives managed by different people/places. Another is that they are
> actually scrubbed to plain text, so my guess is that bots would miss
> that tag anyway once it is in plain text (but I could be wrong).
> Finally, most people when they reply quote previous messages (in fact
> this is considered quite courteous so there is a record). All these
> things lead to the fact that when you post on a high volume public
> list serv, your posts tend to be, well, public.
>
> Best of luck to you,
>
> Joshua
>
> On Sun, Apr 21, 2013 at 9:54 AM, - Boon Loong <boon_loong at hotmail.com> wrote:
>> Hi is it possible to add this line to my earlier post <meta name="robots" content="noindex"> to prevent it from being indexed by google? the post is at https://stat.ethz.ch/pipermail/r-help//2013-April/350857.html
>> From: boon_loong at hotmail.com
>> To: r-help at r-project.org
>> Subject: Help for bootstrappingş
>> Date: Thu, 4 Apr 2013 15:14:05 +0800
>>
>>
>>
>>
>> I have a set of data for US t-bill returns and US stock returns frm 1980-2012. I am trying to bootstrap the data and obtain the minimum variance portfolio and repeat this portfolio 1000 times. However I am unable to get the correct code function for the minimum variance portfolio. When I tried to enter Opt(OriData+1, 1, 5, 0), I get "error:subscript out of bounds" Please help!
>> library("quadprog")
>> ##############################Preparing for datarawdata = read.table("C:/Desktop/data.txt", header=T)Rf = rawdata[,1]US = rawdata[,2]data = data.frame(Rf,US)OriData = as.matrix(data)
>> ##############################the GetBSData functionGetBSData<-function(data){x = 1:396s = sample(x,6,replace=T)bsdata = data[(s[1]):(s[1]+59),] for (j in 2:6) { a = data[(s[j]):(s[j]+59),] bsdata = rbind(bsdata,a) }return(bsdata)}
>> #set.seed(1234)#trial<-GetBSData(OriData)
>> ##############################the Minimisation functionOpt<-function(data, horizon, col, lamda){TbillReturn<-numeric(30/horizon)USReturn<-numeric(30/horizon)for (x in 1: (30/horizon)){ TbillReturn[x]<-prod(data[(12*horizon*(x-1)+1):(12*horizon*(x-1)+12*horizon),col])-1 USReturn[x]<-prod(data[(12*horizon*(x-1)+1):(12*horizon*(x-1)+12*horizon),2])-1}Return<-cbind(TbillReturn,USReturn)MeanVec<-c(mean(TbillReturn),mean(USReturn))VCovMat<-cov(Return)#return(MeanVec, VCovMat)
>> a<-c(1,1)a<-cbind(a, diag(1,2))
>> WtVec<-solve.QP(Dmat=VCovMat*2, dvec= MeanVec*lamda,Amat=a,bvec=c(1,0,0),meq=1)
>> #return(MeanVec, VCovMat, WtVec$solution)return(WtVec$solution)}
>> #Opt(OriData+1, 1, 5, 0)
>> ##############################set.seed(4114)bs=1000 ###number of bootstrap samplesRegion<-5 ###Region indecies, check above.lamdaseq<-seq(0,1,.05) ###the lamda sequence. currently from 0 to 1 by .05.
>> x<-numeric(bs*length(lamdaseq)) ###w1<-matrix(x, bs, length(lamdaseq)) ###To initialise the matrices.w5<-matrix(x, bs, length(lamdaseq)) ###1, 5, 10 denote the horizon.w10<-matrix(x, bs, length(lamdaseq)) ###
>> for (i in 1: bs){BSData<-GetBSData(OriData)+1j=1 for (lamda in lamdaseq){ w1[i,j]<-Opt(BSData, 1, Region, lamda)[1] w5[i,j]<-Opt(BSData, 5, Region, lamda)[1] w10[i,j]<-Opt(BSData, 10, Region, lamda)[1] j=j+1 }
>> x<-numeric(length(lamdaseq)*9) ###To initialise the tabletable<-matrix(x, length(lamdaseq), 9) ###
>> for (k in 1:length(lamdaseq)){ #k:index for lamda
>> table[k,1]<-sort(w1[,k])[.05*bs] ###The first 3 cols are for 1-yr horizon.table[k,2]<-mean(w1[,k]) ###From left to right: 5 percentile,table[k,3]<-sort(w1[,k])[.95*bs] ###mean, and 95 percentile.
>> table[k,4]<-sort(w5[,k])[.05*bs] ###table[k,5]<-mean(w5[,k]) ###Col 4-6 are for 5-yr horizon.table[k,6]<-sort(w5[,k])[.95*bs] ###
>> table[k,7]<-sort(w10[,k])[.05*bs] ###table[k,8]<-mean(w10[,k]) ###Col 7-9 are for 5-yr horizon.table[k,9]<-sort(w10[,k])[.95*bs] ###}}
>> table
>> TenMinusOne<-numeric(length(lamdaseq))FiveMinusOne<-numeric(length(lamdaseq))TenMinusFive<-numeric(length(lamdaseq))
>> for (p in 1:length(lamdaseq)){DiffVec<-w10[,p]-w1[,p]TenMinusOne[p]<-length(DiffVec[DiffVec>0])
>> DiffVec<-w5[,p]-w1[,p]FiveMinusOne[p]<-length(DiffVec[DiffVec>0])
>> DiffVec<-w10[,p]-w5[,p]TenMinusFive[p]<-length(DiffVec[DiffVec>0])}
>> diff<-cbind(FiveMinusOne,TenMinusOne)diff<-cbind(diff, TenMinusFive)sn<-seq(1, length(lamdaseq))f2<-cbind(sn, diff)f2
>> ##############################################END
>> [[alternative HTML version deleted]]
>>
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
>
> --
> Joshua Wiley
> Ph.D. Student, Health Psychology
> University of California, Los Angeles
> http://joshuawiley.com/
> Senior Analyst - Elkhart Group Ltd.
> http://elkhartgroup.com
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list