[R] help with lme
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Oct 30 10:39:47 CET 2012
Dear Sylvia,
R-sig-mixed-models is a better list for questions about mixed models.
The summary gives you the standard error for the fixed effects. See the output in your mail. E.g. AGQ has a standard error of 0.044
Have a look at http://glmm.wikidot.com/faq, it covers some topics on mixed models.
Best regards,
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium
+ 32 2 525 02 51
+ 32 54 43 61 85
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
-----Oorspronkelijk bericht-----
Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] Namens Sylvia Opriessnig
Verzonden: dinsdag 30 oktober 2012 9:08
Aan: r-help at R-project.org
Onderwerp: [R] help with lme
Dear Madam or Sir
I am writing you hoping, that you can help me with a problem concerning the output of regressions done with the function lme in R.
I would need the standard deviations for intercepts and predictors, but in the output I can only find those for the intercepts. Could it be, that this is my fault? (I am just a beginner with R and multilevel modeling).
I am sorry to annoy you with this problem but I could not deal with the problem with the help of books, internet or friends. So my hope is that you would be so kind and you find some minutes to look through one of my examples.
I would be deeply greatful.
My R script:
library (nlme) #Datei laden
randomInterceptDIQAGQ <- lme(NoteD ~ IQ + AGQ, data = Gind, random = ~1|Klnr, method = "ML", na.action = na.exclude) summary (randomInterceptDIQAGQ) intervals (randomInterceptDIQAGQ)
my Output:
Final model, : 2 predictors, no RandomSlope
> randomInterceptDIQAGQ <- lme(NoteD ~ IQ + AGQ, data = Gind, random =
> ~1|Klnr, method = "ML", na.action = na.exclude)
> summary (randomInterceptDIQAGQ)
Linear mixed-effects model fit by maximum likelihood
Data: Gind
AIC BIC logLik
943.9653 964.7289 -466.9826
Random effects:
Formula: ~1 | Klnr
(Intercept) Residual
StdDev: 0.3208885 0.6210003
Fixed effects: NoteD ~ IQ + AGQ
Value Std.Error DF t-value p-value
(Intercept) 1.8093739 0.06661912 439 27.159979 0.0000
IQ -0.1565731 0.04810124 439 -3.255074 0.0012
AGQ -0.4987539 0.04430031 439 -11.258476 0.0000
Correlation:
(Intr) IQ
IQ 0.001
AGQ 0.005 -0.503
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.40082246 -0.62266936 -0.07491225 0.54494014 3.77426037
Number of Observations: 470
Number of Groups: 29
With best regards from Austria
Sylvia Opriessnig
[[alternative HTML version deleted]]
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
* * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document.
The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.
More information about the R-help
mailing list