[R] "State Space" + "Kalman Filter "
nserdar
snes1982 at hotmail.com
Thu Oct 18 21:02:16 CEST 2012
So I do not find example what I expect.
I plan to estimate the multi-factor model for Kalman Filter Mean Reverting,
Random Walk and Random Coefficient.
For example:
R(it)= Alpha(it)+ Beta(it)R(mt)+Gamma(it)(R(mt)^2)+delta(it)(R(mt)^3)+ V(it)
KF Random walk
Alpha(it)= Alpha(it-1)+W(i1t)
Beta(it)= Beta(it-1)+W(i2t)
Gamma(it)= Gamma(it-1)+W(i3t)
Delta(it)= Delta(it-1)+W(i4t)
Note: (alphabar= Mean Alpha, Betabar= Mean Beta, Gamma= Mean Gamma,
Deltabar= Delta Mean)
KF Mean Reverting
Alpha(it)= Alphabar(i)+ phi* (Alpha(it-1)-Alphabar(i))+W(i1t)
Beta(it)= Betabar(i)+ phi* (Beta(it-1)-Betahabar(i))+W(i2t)
Gamma(it)= Gammabar(i)+ phi* (Gamma(it-1)-Gammabar(i))+W(i3t)
Delta(it)= Deltabar(i)+ phi* (Delta(it-1)-Deltabar(i))+W(i4t)
Kf Random Coefficient
Alpha(it)= Alpha bar(i)+ W(i1t)
Beta(it)= Beta bar(i)+ W(i2t)
Gamma(it)= Gamma bar(i)+W(i3t)
Delta(it)= Deltabar(i)+W(i4t)
Step 1) Maximize MLE to estimate initial values (etc: Alphabar, ...., Delta
bar, Variances of State equation Error, Observation Error,..... etc... ) (
I also use L-BFGS-B methods to optimization but I failed. :( )
Step 2) Apply estimated values from step 1 in Kalman Filter to filtering.
Then obtain MSE etc ( I can calculate by myself)
Please let me know whether I can follow these steps in DLM package or not.
Regards,
Ser
--
View this message in context: http://r.789695.n4.nabble.com/State-Space-Kalman-Filter-tp4646615p4646675.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list