[R] se's and CI's for fitted lines in multivariate regression analysis
Sigrid
s.stenerud at gmail.com
Tue Oct 16 20:58:03 CEST 2012
Okay, I've now tried to the predict function and get the SE, although it seem
to calculate SE for each observation from the line (I assume), while I want
the CI-interval and SE for each line fitted line for the treatment. I do not
really understand what parameter mean these SEs are calculated from when
there would be several means along the line...?. This is what I get with
predict:
> predict(model, se.fit = TRUE, interval = "confidence")
Another way I can think of to show how well the lines fit the data is to
look at the intercepts and slopes instead. I can specify the line for each
level and would then get the estimate of slope and intercept, although I do
not know how I show the standard errors of the slope and intercept.
lm(decrease[treatment=="A"]~colpos[treatment=="A"])
Call:
lm(formula = decrease[treatment == "A"] ~ colpos[treatment == "A"])
Coefficients:
(Intercept) colpos[treatment == "A"]
2.5357 0.4643
Please let me know if you know how to find st. errors for (or st. error for
slope and intercept) of lines for each factor of a treatment.
Thank you
~S
--
View this message in context: http://r.789695.n4.nabble.com/se-s-and-CI-s-for-fitted-lines-in-multivariate-regression-analysis-tp4645703p4646393.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list