[R] data after write() is off by 1 ?
Rui Barradas
ruipbarradas at sapo.pt
Tue Nov 20 20:50:46 CET 2012
Hello,
You are seeing the levels of a factor but saving its values. Internally,
factors are coded as consecutive integers starting at 1, and that's what
is saved to file using write.table. To have the levels "0", "1", etc and
not the corresponding values 1, 2, etc, try
levels(prediction)[prediction]
or
as.integer(levels(prediction)[prediction])
Hope this helps,
Rui Barradas
Em 20-11-2012 19:30, Brian Feeny escreveu:
> I am new to R, so I am sure I am making a simple mistake. I am including complete information in hopes
> someone can help me.
>
> Basically my data in R looks good, I write it to a file, and every value is off by 1.
>
> Here is my flow:
>
>> str(prediction)
> Factor w/ 10 levels "0","1","2","3",..: 3 1 10 10 4 8 1 4 1 4 ...
> - attr(*, "names")= chr [1:28000] "1" "2" "3" "4" ...
>> print(prediction)
> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
> 2 0 9 9 3 7 0 3 0 3 5 7 4 0 4 3 3 1 9 0 9 1 1
>
> ok, so it shows my values are 2, 0, 9, 9, 3 etc
>
> # I write my file out
> write(prediction, file="prediction.csv")
>
> # look at the first 10 values
> $ head -10 prediction.csv
> 3 1 10 10 4
> 8 1 4 1 4
> 6 8 5 1 5
> 4 4 2 10 1
> 10 2 2 6 8
> 5 3 8 5 8
> 8 6 5 3 7
> 3 6 6 2 7
> 8 8 5 10 9
> 8 9 3 7 8
>
> The complete work of what I did was as follows:
>
> # First I load in a dataset, label the first column as a factor
>> dataset <- read.csv('train.csv',head=TRUE)
>> dataset$label <- as.factor(dataset$label)
> # it has 42000 obs. 785 variables
>> str(dataset)
> 'data.frame': 42000 obs. of 785 variables:
> $ label : Factor w/ 10 levels "0","1","2","3",..: 2 1 2 5 1 1 8 4 6 4 ...
> $ pixel0 : int 0 0 0 0 0 0 0 0 0 0 ...
> $ pixel1 : int 0 0 0 0 0 0 0 0 0 0 ...
> $ pixel2 : int 0 0 0 0 0 0 0 0 0 0 ...
> [list output truncated]
>
> # I make a sampling testset and trainset
>> index <- 1:nrow(dataset)
>> testindex <- sample(index, trunc(length(index)*30/100))
>> testset <- dataset[testindex,]
>> trainset <- dataset[-testindex,]
> # build model, predict, view
>> model <- svm(label~., data = trainset, type="C-classification", kernel="radial", gamma=0.0000001, cost=16)
>> prediction <- predict(model, testset)
>> tab <- table(pred = prediction, true = testset[,1])
> true
> pred 0 1 2 3 4 5 6 7 8 9
> 0 1210 0 3 1 0 5 7 2 5 8
> 1 0 1415 2 0 2 1 0 7 5 0
> 2 0 2 1127 12 3 0 2 7 2 0
> 3 0 0 7 1296 0 10 0 2 15 6
> 4 1 1 8 2 1201 2 4 3 5 16
> 5 3 1 0 13 0 1100 3 1 2 3
> 6 3 0 3 0 5 9 1263 0 1 0
> 7 0 2 9 6 6 1 0 1296 1 13
> 8 3 5 7 11 1 2 0 2 1190 4
> 9 1 1 2 3 17 2 0 4 4 1190
>
>
> Ok everything looks great up to this point..........so I try to apply my model to a "real" testset, which is the same format as my previous
> dataset, except it does not have the label/factor column, so its 28000 obs 784 variables:
>
>> testset <- read.csv('test.csv',head=TRUE)
>> str(testset)
> 'data.frame': 28000 obs. of 784 variables:
> $ pixel0 : int 0 0 0 0 0 0 0 0 0 0 ...
> $ pixel1 : int 0 0 0 0 0 0 0 0 0 0 ...
> $ pixel2 : int 0 0 0 0 0 0 0 0 0 0 ...
> [list output truncated]
>
>> prediction <- predict(model, testset)
>> summary(prediction)
> 0 1 2 3 4 5 6 7 8 9
> 2780 3204 2824 2767 2771 2516 2744 2898 2736 2760
>> print(prediction)
> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
> 2 0 9 9 3 7 0 3 0 3 5 7 4 0 4 3 3 1 9 0 9 1 1
> 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
> 5 7 4 2 7 4 7 7 5 4 2 6 2 5 5 1 6 7 7 4 9 8 7
> [list output truncated]
>
>> write(prediction, file="prediction.csv")
> $ head -10 prediction.csv
> 3 1 10 10 4
> 8 1 4 1 4
> 6 8 5 1 5
> 4 4 2 10 1
> 10 2 2 6 8
> 5 3 8 5 8
> 8 6 5 3 7
> 3 6 6 2 7
> 8 8 5 10 9
> 8 9 3 7 8
>
>
> I am obviously making a mistake. Everything is off by a value of 1.
>
>
> Can someone tell me what I am doing wrong?
>
> Brian
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list