[R] evaluation of categorical and opinion data
Petr PIKAL
petr.pikal at precheza.cz
Thu Mar 8 15:43:21 CET 2012
Dear all.
I have some data and I seek the way to start their evaluation. The values
are from survey of different persons and their opinion about various
methods (metoda) and instrument (uzel). I am not sure where to start. I
would like to end with combination of method (metoda) and instrument
(uzel) sorted to let say three categories according to knowledge (znalost)
and influence (vliv)
knowledge high, influence high - explain it to others
knowledge high, influence low - explain it to others
knowledge low, influence high - start some research
knowledge low, influence low - start some do nothing
I thought about vcd or image or filled contour to see what is amount of
knowledge or influence
xt<-xtabs(vliv~metoda+uzel, data=komplet.ag)
filled.contour(1:8, 1:nrow(xt), t(as.matrix(xt)))
Although it shows me colour scale from no knowledge to max knowledge, it
is rather unconvenient as it does not show names of methods and
instruments. I can make selections according to values of variable znalost
or vliv but I would like also to see the whole picture.
If anybody has some insight into such matter, where to look, what
procedures/graphical function I could use I would be thankful.
Below you can find some data.
Regards
Petr
dput(komplet.ag)
structure(list(metoda = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L), .Label = c("filtrab", "findex", "fluid", "ia", "merpov",
"mokr", "smac", "spolej", "tpd", "velik", "visk", "zeta"), class =
"factor"),
uzel = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("kalc",
"mleti", "doprava", "mokrmlyn", "povrch", "filtrace", "suseni",
"mikro"), class = "factor"), vliv = c(4, 4.5, 5.75, 5, 5,
4, 3.25, 4.5, 4.5, 4.5, 5, 3.25, 4, 3.75, 3.5, 4.5, 4.5,
4, 2.5, 4.75, 3, 2.75, 3, 1.5, 3.25, 3.5, 3.25, 5.5, 2.25,
3.25, 2, 2.25, 1, 1.5, 2.25, 1, 4, 3.66666666666667, 3.33333333333333,
NaN, 3.66666666666667, 4, 2.33333333333333, 4.33333333333333,
1, 4.33333333333333, 3.33333333333333, 1.66666666666667,
4.5, 4, 2.5, NaN, 5, 3, 4.5, 5, 5, 3.5, 3.5, 4, 2.5, 3.5,
2.5, NaN, 2, 3.5, 3.5, 2.5, 3, 2.5, 3, 4, 4, 4, 4, NaN, 4,
4, 2, 4, 2, 1, 4, 3, 4.75, 5, 3.75, 4, 4.5, 4, 2.33333333333333,
4.25, 2.5, 4.25, 3, 2.66666666666667), znalost = c(4.125,
2.5625, 5.375, 4.125, 4.75, 2.5625, 3.5, 3.1875, 1, 5.0625,
3.5, 1, 4.125, 2.5625, 4.4375, 2.875, 3.1875, 2.5625, 2.25,
3.1875, 1, 2.5625, 3.5, 1, 2.25, 1, 3.5, 2.875, 2.25, 1,
2.25, 2.25, 1, 1, 1, 1, 2.66666666666667, 3.08333333333333,
4.33333333333333, NaN, 3.08333333333333, 3.08333333333333,
2.66666666666667, 3.08333333333333, 1, 5.58333333333333,
2.66666666666667, 1, 2.25, 2.25, 3.5, NaN, 4.125, 2.875,
3.5, 5.375, 2.25, 4.125, 2.25, 4.125, 3.5, 2.25, 3.5, NaN,
2.25, 2.25, 2.25, 2.25, 1, 2.25, 3.5, 4.125, 1, 1, 1, NaN,
2.25, 1, 1, 2.25, 1, 1, 1, 1, 2.875, 2.25, 2.875, 1, 2.25,
2.875, 1.83333333333333, 2.25, 1, 2.25, 2.25, 1.83333333333333
)), .Names = c("metoda", "uzel", "vliv", "znalost"), row.names = c(NA,
-96L), class = "data.frame")
More information about the R-help
mailing list