[R] F and Wald chi-square tests in mixed-effects models

Helios de Rosario helios.derosario at ibv.upv.es
Thu Sep 29 10:36:15 CEST 2011

I have a doubt about the calculation of tests for fixed effects in
mixed-effects models.

I have read that, except in well-balanced designs, the F statistic that
is usually calculated for ANOVA tables may be far from being distributed
as an exact F distribution, and that's the reason why the anova method
on "mer" objects (calculated by lmer) do not calculate the denominator
df nor a p-value. --- See for instance Douglas Bates' long post on this
topic, in:

However, Anova does calculate p-values from Wald chi-square tests for
fixed terms from "mer" objects (as well as from "lme" objects, from
lme). I suppose that the key to understand the logic for this is in Fox
& Weisberg's commentary in "An R Companion to Applied Regression" (2nd
edition, p. 272), where they say: "Likelihood ratio tests and F tests
require fitting more than one model to the data, while Wald tests do

Unfortunately, that's too brief a commentary for me to understand why
and how the Wald test can overcome the deficiencies of F-tests in
mixed-effects models. The online appendix of "An R Companion..." about
mixed-effects models does not comment on hypothesis tests either.

I would appreciate if someone can give some clues or references to read
about this issue.


Universidad Politécnica de Valencia • Edificio 9C
Camino de Vera s/n • 46022 VALENCIA (ESPAÑA)
Tel. +34 96 387 91 60 • Fax +34 96 387 91 69

  Antes de imprimir este e-mail piense bien si es necesario hacerlo.
En cumplimiento de la Ley Orgánica 15/1999 reguladora de la Protección
de Datos de Carácter Personal, le informamos de que el presente mensaje
contiene información confidencial, siendo para uso exclusivo del
destinatario arriba indicado. En caso de no ser usted el destinatario
del mismo le informamos que su recepción no le autoriza a su divulgación
o reproducción por cualquier medio, debiendo destruirlo de inmediato,
rogándole lo notifique al remitente.

More information about the R-help mailing list