[R] glht (multcomp): NA's for confidence intervals using univariate_calpha (fwd)
Torsten Hothorn
Torsten.Hothorn at R-project.org
Mon Sep 5 15:02:37 CEST 2011
fixed @ R-forge. New version should appear on CRAN soon.
Thanks for the report!
Torsten
>
> ---------- Forwarded message ----------
> Date: Sat, 3 Sep 2011 23:56:35 +0200
> From: Ulrich Halekoh <Ulrich.Halekoh at agrsci.dk>
> To: "r-help at r-project.org" <r-help at r-project.org>
> Subject: [R] glht (multcomp): NA's for confidence intervals using
> univariate_calpha
>
> Hej,
>
> Calculation of confidence intervals for means
> based on a model fitted with lmer
>
> using the package multcomp
>
> - yields results for calpha=adjusted_calpha
> - NA's for calpha=univariate_calpha
>
>
> Example:
> library(lme4)
> library(multcomp)
> ### Generate data
> set.seed(8)
> d<-expand.grid(treat=1:2,block=1:3)
> e<-rnorm(3)
> names(e)<-1:3
> d$y<-rnorm(nrow(d)) + e[d$block]
> d<-transform(d,treat=factor(treat),block=factor(block))
> ##### lmer fit
> Mod<-lmer(y~treat+ (1|block), data=d)
> ### estimate treatment means
> L<-cbind(c(1,0),c(0,1))
> s<-glht(Mod,linfct=L)
> ## confidence intervals
> confint(s,calpha=adjusted_calpha())
> #produces NA's for the confidence limits
> confint(s,calpha=univariate_calpha())
>
> #for models fitted with lm the problem does not occur
> G<-lm(y~treat+ block, data=d)
> L<-matrix( c(1,0,1/3,1/3,1,1,1/3,1/3),2,4,byrow=TRUE)
> s<-glht(G,linfct=L)
> confint(s,calpha=adjusted_calpha())
> confint(s,calpha=univariate_calpha())
>
>
>
> multcomp version 1.2-7
> R:platform i386-pc-mingw32
> version.string R version 2.13.1 Patched (2011-08-19 r56767)
>
>
> Regards
>
> Ulrich Halekoh
> Department of Molecular Biology and Genetics,
> Aarhus University, Denmark
> Ulrich.Halekoh at agrsci.dk
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
More information about the R-help
mailing list