[R] summarizing a data frame i.e. count -> group by

Dennis Murphy djmuser at gmail.com
Mon Oct 24 06:42:02 CEST 2011


And the plyr version of this would be (using DF as the data frame name)

## transform method, mapping length(runtime) to all observations
## similar to David's results:
library('plyr')
ddply(DF, .(time, partitioning_mode), transform, n = length(runtime))
# or equivalently, the newer and somewhat faster
ddply(DF, .(time, partitioning_mode), mutate, n = length(runtime))

# If you just want the counts, then use

ddply(DF, .(time, partitioning_mode), summarise, n = length(runtime))

##---------
# Just for fun, here's the equivalent SQL call using sqldf():

library('sqldf')
sqldf('select time partitioning_mode count(*) from DF group by time
partitioning_mode')

# which you can distribute over multiple lines for readability, e.g.

sqldf('select time, partitioning_mode, count(*) as n
      from DF
      group by time, partitioning_mode')

# Result:
  time partitioning_mode  n
1    1       replication  4
2    1          sharding 11

##---------
# To do the same type of summary in data.table (to follow up on Jim
Holtman's post), here's one way:

library(data.table)
dt <- data.table(DF, key = 'time, partitioning_mode')
dt[, list(n = length(runtime)), by = key(dt)]
     time partitioning_mode  n
[1,]    1       replication  4
[2,]    1          sharding 11


###------
HTH,
Dennis


On Sun, Oct 23, 2011 at 10:29 AM, Giovanni Azua <bravegag at gmail.com> wrote:
> Hello,
>
> This is one problem at the time :)
>
> I have a data frame df that looks like this:
>
>  time partitioning_mode workload runtime
> 1     1          sharding    query     607
> 2     1          sharding    query      85
> 3     1          sharding    query      52
> 4     1          sharding    query      79
> 5     1          sharding    query      77
> 6     1          sharding    query      67
> 7     1          sharding    query      98
> 8     1          sharding  refresh    2932
> 9     1          sharding  refresh    2870
> 10    1          sharding  refresh    2877
> 11    1          sharding  refresh    2868
> 12    1       replication    query    2891
> 13    1       replication    query    2907
> 14    1       replication    query    2922
> 15    1       replication    query    2937
>
> and if I could use SQL ... omg! I really wish I could! I would do exactly this:
>
> insert into throughput
>  select time, partitioning_mode, count(*)
>  from data.frame
>  group by time, partitioning_mode
>
> My attempted R versions are wrong and produce very cryptic error message:
>
>> throughput <- aggregate(x=df[,c("time", "partitioning_mode")], by=list(df$time,df$partitioning_mode), count)
> Error in `[.default`(df2, u_id, , drop = FALSE) :
>  incorrect number of dimensions
>
>> throughput <- aggregate(x=df, by=list(df$time,df$partitioning_mode), count)
> Error in `[.default`(df2, u_id, , drop = FALSE) :
>  incorrect number of dimensions
>
>>throughput <- tapply(X=df$time, INDEX=list(df$time,df$partitioning), FUN=count)
> I cant comprehend what comes out from this one ... :(
>
> and I thought C++ template errors were the most cryptic ;P
>
> Many many thanks in advance,
> Best regards,
> Giovanni
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



More information about the R-help mailing list