[R] About stepwise regression problem
pigpigmeow
glorykwok at hotmail.com
Tue Oct 4 10:00:11 CEST 2011
First of all, I have GAMs
noxd<-gam(newNOX~pressure+maxtemp+s(avetemp,bs="cr")+s(mintemp,bs="cr")+s(RH,bs="cr")+s(solar,bs="cr")+s(windspeed,bs="cr")+s(transport,bs="cr"),family=gaussian
(link=log),groupD,methods=REML)
Then I type " summary(noxd)". and show
Family: gaussian
Link function: log
Formula:
newNO2 ~ pressure + s(maxtemp, bs = "cr") + s(avetemp, bs = "cr") +
s(mintemp, bs = "cr") + RH + s(solar, bs = "cr") + s(windspeed,
bs = "cr") + s(transport, bs = "cr")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.721513 0.049108 55.419 <2e-16 ***
pressure 0.028988 0.019434 1.492 0.140
RH 0.005228 0.009763 0.535 0.594
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(maxtemp) 6.346 7.276 1.223 0.29991
s(avetemp) 1.000 1.000 0.226 0.63562
s(mintemp) 1.908 2.396 1.066 0.35871
s(solar) 3.797 4.490 2.164 0.07359 .
s(windspeed) 5.305 6.341 2.346 0.03648 *
s(transport) 7.234 7.984 2.807 0.00884 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.307 Deviance explained = 49.1%
GCV score = 61.136 Scale est. = 44.49 n = 105
*I eliminate the greatest of p-value, that is s(avetemp) term then type
"summary(no2d)" and show
*
Family: gaussian
Link function: log
Formula:
newNO2 ~ pressure + s(maxtemp, bs = "cr") + s(mintemp, bs = "cr") +
RH + s(solar, bs = "cr") + s(windspeed, bs = "cr") + s(transport,
bs = "cr")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.720973 0.048834 55.719 <2e-16 ***
pressure 0.031346 0.019040 1.646 0.104
RH 0.006165 0.009583 0.643 0.522
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(maxtemp) 6.499 7.425 1.450 0.1942
s(mintemp) 1.975 2.487 1.788 0.1655
s(solar) 3.925 4.628 2.118 0.0770 .
s(windspeed) 5.373 6.417 2.967 0.0101 *
s(transport) 7.043 7.822 2.785 0.0097 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.316 Deviance explained = 49.2%
GCV score = 59.746 Scale est. = 43.919 n = 105
>
*I eliminate the greatest of p-value, that is RH term then type
"summary(no2d)" and show
*
Family: gaussian
Link function: log
Formula:
newNO2 ~ pressure + s(maxtemp, bs = "cr") + s(mintemp, bs = "cr") +
s(solar, bs = "cr") + s(windspeed, bs = "cr") + s(transport,
bs = "cr")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.72001 0.04859 55.974 <2e-16 ***
pressure 0.02978 0.01878 1.586 0.117
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(maxtemp) 6.544 7.468 1.654 0.12830
s(mintemp) 1.952 2.460 1.697 0.18301
s(solar) 3.977 4.686 2.869 0.02211 *
s(windspeed) 5.381 6.425 2.641 0.01953 *
s(transport) 7.052 7.830 3.348 0.00257 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.321 Deviance explained = 49%
GCV score = 58.61 Scale est. = 43.591 n = 105
I remove s(mintemp) term... until
Family: gaussian
Link function: log
Formula:
newNO2 ~ s(windspeed, bs = "cr")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.78159 0.04701 59.16 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(windspeed) 1.775 2.251 4.54 0.0101 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.1 Deviance explained = 11.5%
GCV score = 59.348 Scale est. = 57.78 n = 105
I remain s(windspeed) term finally.my significant level = 0.05.... I have a
question...
First, Does the backward elimation perform correctly?
Second, Is it possible run the process( backward elimation) automatically?
Third, I found the the linear part was listed "Pr(>|t|)" and the smoothing
part " p-value". these two terms are the same meaning?
--
View this message in context: http://r.789695.n4.nabble.com/About-stepwise-regression-problem-tp3870217p3870217.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list