[R] lines and points in xyplot()

Dennis Murphy djmuser at gmail.com
Wed Nov 23 21:59:20 CET 2011


Hi:

Try this:

library('lattice')
xyplot(y ~ x,
              type = c('g', 'p'),
              panel = function(x, y, ...){
              panel.xyplot(x, y, ...)
              panel.lines(x, predict(fm), col = 'black', lwd = 2)
              }
         )

HTH,
Dennis

On Wed, Nov 23, 2011 at 9:18 AM, Doran, Harold <HDoran at air.org> wrote:
> Given the following data, I want a scatterplot with the data points and the predictions from the regression.
>
> Sigma <- matrix(c(1,.6,1,.6), 2)
> mu <- c(0,0)
> dat <- mvrnorm(5000, mu, Sigma)
>
> x <- dat[,1] * 50 + 200
> y <- dat[,2] * 50 + 200
>
> fm <- lm(y ~ x)
>
> ### This gives the regression line, but not the data
> xyplot(y ~ x,
>               type = c('g', 'p'),
>               panel = function(x, y){
>               panel.lines(x, predict(fm))
>               }
> )
>
> ### This gives both data but as point
> xyplot(y + predict(fm) ~ x,
>               type = c('g', 'p'),
>               )
>
> I know I can add an abline easily, but my problem is a bit more complex and the code above is just an example. What is the best way for the predicted data to form a solid line and let the data points remain as points
>
> Harold
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



More information about the R-help mailing list