[R] errors with lme4
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Nov 22 10:12:35 CET 2011
Dear Alessio,
A few remarks.
- R-sig-mixed models is a better list for this kind of questions
- use the glmer() function if you want logistic or poisson regression
- the error you are getting is an indication that the model is too complex for the data
- watch for colinearity in the covariates
Best regards,
Thierry
> -----Oorspronkelijk bericht-----
> Van: r-help-bounces op r-project.org [mailto:r-help-bounces op r-project.org]
> Namens Alessio Unisi
> Verzonden: maandag 21 november 2011 18:20
> Aan: r-help op r-project.org
> Onderwerp: [R] errors with lme4
> Urgentie: Hoog
>
> Dear list,
> i'm a new R user, so I apologize if the topic is already being addressed by some
> other user.
>
> I'm trying to determine if the reproductive success of a species of bird is related
> to a list of covariates.
>
> These are the covariates:
> § elev: elevation of nest (meters)
> § seadist: distance from the sea (meters)
> § meanterranova: records of temperature
> § minpengS1: records of temperature
> § wchillpengS1: records of temperature
> § minpengS2: records of temperature
> § wchillpengS2: records of temperature
> § nnd: nearest neighbour distance
> § npd: nearest penguin distance
> § eggs: numbers of eggs
> § lay: laying date (julian calendar)
> § hatch: hatching date (julian calendar)
> I have some NAs in the data.
>
> I want to test the model with all the variable then i want to remove some, but
> the ideal model:
> GLM.1 <-lmer(fledgesucc ~ +lay +hatch +elev +seadist +nnd +npd
> +meanterranova +minpengS1 +minpengS2 +wchillpengS1 +wchillpengS2
> +(1|territory), family=binomial(logit), data=fledge)
>
> doesn't work because of these errors:
> 'Warning message: In mer_finalize(ans) : gr cannot be computed at initial par
> (65)'.
> "matrix is not symmetric [1,2]"
>
> If i delete one or more of the T records (i.e. minpengS2 +wchillpengS2) the
> model works...below and example:
>
> GLM.16 <-lmer(fledgesucc ~ lay +hatch +elev +seadist +nnd +npd
> +meanterranova +minpengS1 +(1|territory), family=binomial(logit),
> data=fledge)
>
> > summary(GLM.16)
> Generalized linear mixed model fit by the Laplace approximation
> Formula: fledgesucc ~ lay + hatch + elev + seadist + nnd + npd +
> meanterranova + minpengS1 + (1 | territory)
> Data: fledge
> AIC BIC logLik deviance
> 174 204.2 -77 154
> Random effects:
> Groups Name Variance Std.Dev.
> territory (Intercept) 0.54308 0.73694
> Number of obs: 152, groups: territory, 96
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 14.136846 14.510089 0.974 0.330
> lay -0.007642 0.267913 -0.028 0.977
> hatch -0.025947 0.267318 -0.097 0.923
> elev 0.007481 0.027765 0.270 0.788
> seadist -0.004277 0.004550 -0.940 0.347
> nnd -0.035535 0.026504 -1.341 0.180
> npd 0.003788 0.005521 0.686 0.493
> meanterranova 1.242570 1.426158 0.871 0.384
> minpengS1 -0.399852 0.418722 -0.955 0.340
>
> Correlation of Fixed Effects:
> (Intr) lay hatch elev seadst nnd npd mntrrn
> lay 0.411
> hatch -0.515 -0.993
> elev -0.015 0.141 -0.135
> seadist -0.003 -0.023 0.019 -0.440
> nnd -0.061 0.066 -0.059 -0.020 0.231
> npd 0.033 -0.108 0.100 0.298 -0.498 -0.338
> meanterranv 0.459 -0.118 0.075 -0.061 0.014 -0.048 0.130
> minpengS1 -0.540 0.015 0.035 0.032 0.000 0.039 -0.086 -0.970
>
>
> I've attached an example of my dataset only 15 rows just to see the
> dataset. Let me know if you need more informations.
>
> Thanks in advance for your help and advices!
> regards
>
> --
> Alessio Franceschi
> Phd student
> Dipartimento di Scienze Ambientali "G. Sarfatti"
> Università di Siena
> Via P.A. Mattioli, 8 - 53100 Siena (Italy)
> Cell. +393384431806
> email: franceschi6 op unisi.it; alfranceschi op alice.it
More information about the R-help
mailing list