[R] Estimate of intercept in loglinear model
David Winsemius
dwinsemius at comcast.net
Mon Nov 7 19:11:54 CET 2011
On Nov 7, 2011, at 12:59 PM, Colin Aitken wrote:
> How does R estimate the intercept term \alpha in a loglinear
> model with Poisson model and log link for a contingency table of
> counts?
>
> (E.g., for a 2-by-2 table {n_{ij}) with \log(\mu) = \alpha +
> \beta_{i} + \gamma_{j})
>
> I fitted such a model and checked the calculations by hand. I
> agreed with the main effect terms but not the intercept.
> Interestingly, I agreed with the fitted value provided by R for the
> first cell {11} in the table.
>
> If my estimate of intercept = \hat{\alpha}, my estimate of the
> fitted value for the first cell = exp(\hat{\alpha}) but R seems to
> be doing something else for the estimate of the intercept.
>
> However if I check the R $fitted_value for n_{11} it agrees with my
> exp(\hat{\alpha}).
>
> I would expect that with the corner-point parametrization, the
> estimates for a 2 x 2 table would correspond to expected frequencies
> exp(\alpha), exp(\alpha + \beta), exp(\alpha + \gamma), exp(\alpha +
> \beta + \gamma). The MLE of \alpha appears to be log(n_{.1} * n_{1.}/
> n_{..}), but this is not equal to the intercept given by R in the
> example I tried.
>
> With thanks in anticipation,
>
> Colin Aitken
>
>
> --
> Professor Colin Aitken,
> Professor of Forensic Statistics,
Do you suppose you could provide a data-corpse for us to dissect?
Noting the tag line for every posting ....
> and provide commented, minimal, self-contained, reproducible code.
--
David Winsemius, MD
West Hartford, CT
More information about the R-help
mailing list