[R] Decision tree model using rpart ( classification
aajit75
aajit75 at yahoo.co.in
Fri Nov 4 09:32:07 CET 2011
Hi,
Thanks for the responce, code for each case is as:
c_c_factor <- 0.001
min_obs_split <- 80
A)
fit <- rpart(segment ~., method="class",
control=rpart.control(minsplit=min_obs_split, cp=c_c_factor),
data=Beh_cluster_out)
B)
fit <- rpart(segment ~., method="class",
control=rpart.control(minsplit=min_obs_split, cp=c_c_factor),
data=profile_cluster_out)
C)
fit <- rpart(decile ~., method="class",
control=rpart.control(minsplit=min_obs_split, cp=c_c_factor),
data=dtm_ip)
In A and B target variable 'segment' is from the clustering data using same
set of input variables , while in C target variable 'decile' is derived from
behavioural variables and input variables are from profile data. Number of
rows in the input table in all three cases are same.
Regards,
-Ajit
--
View this message in context: http://r.789695.n4.nabble.com/Decision-tree-model-using-rpart-classification-tp3989162p3989320.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list