[R] lm ~ v1 + log(v1) + ... improve adj Rsq ¿any sense?
agent dunham
crosspide at hotmail.com
Tue Mar 22 17:31:01 CET 2011
Dear all,
I want to improve my adj - R sq. I 've chequed some established models and
they introduce two times the same variable, one transformed, and the other
not. It also improves my adj - R sq.
But, isn't this bad for the collinearity? Do I interpret coefficients as
usual?
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.73140 7.22477 0.240 0.81086
v1 -0.33886 0.20321 -1.668 0.09705 .
log(v1) 2.63194 3.74556 0.703 0.48311
v2 -0.01517 0.01089 -1.394 0.16507
log(v3) -0.45719 0.27656 -1.653 0.09995 .
factor1 -1.81517 0.62155 -2.920 0.00392 **
factor2 -1.87330 0.84375 -2.220 0.02759 *
Analysis of Variance Table
Response: height rise
Df Sum Sq Mean Sq F value Pr(>F)
v1 1 51.25 51.246 21.4128 6.842e-06 ***
log(v1) 1 13.62 13.617 5.6897 0.018048 *
v2 1 2.84 2.836 1.1850 0.277713
log(v3) 1 3.02 3.024 1.2638 0.262357
factor1 1 17.62 17.616 7.3608 0.007279 **
factor2 1 11.80 11.797 4.9294 0.027586 *
Residuals 190 454.71 2.393
Thanks,
user at host.com
--
View this message in context: http://r.789695.n4.nabble.com/lm-v1-log-v1-improve-adj-Rsq-any-sense-tp3396935p3396935.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list