[R] Accelerating the calculation of the moving average
Gabor Grothendieck
ggrothendieck at gmail.com
Tue Mar 22 16:19:00 CET 2011
On Tue, Mar 22, 2011 at 11:05 AM, Tonja Krueger <tonja.krueger at web.de> wrote:
>
> Dear List,
> I have a data frame with approximately 500000 rows that looks like this:
>
> Date time value
> …
> 19.07.1956 12:00:00 4.84
> 19.07.1956 13:00:00 4.85
> 19.07.1956 14:00:00 4.89
> 19.07.1956 15:00:00 4.94
> 19.07.1956 16:00:00 4.99
> 19.07.1956 17:00:00 5.01
> 19.07.1956 18:00:00 5.04
> 19.07.1956 19:00:00 5.04
> 19.07.1956 20:00:00 5.04
> 19.07.1956 21:00:00 5.02
> 19.07.1956 22:00:00 5.01
> 19.07.1956 23:00:00 5.00
> 20.07.1956 00:00:00 4.99
> 20.07.1956 01:00:00 4.99
> 20.07.1956 02:00:00 5.00
> 20.07.1956 03:00:00 5.03
> 20.07.1956 04:00:00 5.07
> 20.07.1956 05:00:00 5.10
> 20.07.1956 06:00:00 5.14
> 20.07.1956 07:00:00 5.14
> 20.07.1956 08:00:00 5.11
> 20.07.1956 09:00:00 5.08
> 20.07.1956 10:00:00 5.03
> 20.07.1956 11:00:00 4.98
> 20.07.1956 12:00:00 4.94
> 20.07.1956 13:00:00 4.93
> …
>
> I want to calculate
> the moving average of the right column.
> I tried:
>
> dat$index<-1:length(dat$Zeit)
> qs<- 43800
> erg<-c()
> for (y in min(dat$index):max(dat$index)){
> m<- mean(dat[(dat$index>=y)&(dat$index<=y+qs+1),3])
> erg<-c(erg,m)
> }
>
> It does works, but it takes ages. Is there a faster way to compute the moving average?
>
> Thank you,
> Tonja Krueger
There are rolling mean or sum functions written in C in the caTools,
xts and TTR packages (and possibly other packages as well).
There are also faster ways to do it even in pure R such as the
rollmean function in zoo (although that would not be expected to be as
fast as the C implementations).
--
Statistics & Software Consulting
GKX Group, GKX Associates Inc.
tel: 1-877-GKX-GROUP
email: ggrothendieck at gmail.com
More information about the R-help
mailing list