[R] Gale-Shapley Algorithm for R
VictorDelgado
victor.maia at fjp.mg.gov.br
Thu Dec 29 17:05:28 CET 2011
VictorDelgado wrote
>
> Dear R-helpers,
>
> I'm not a speciallist in writing complex functions, and the function still
> very rusty (any kind of suggestions are very welcome). I want to implement
> Gale-Shapley algorithm for R Language. It is based on
> http://www.jstor.org/stable/10.2307/2312726 Gale and Shapley (1962) , and
> it has evolved to
> http://kuznets.fas.harvard.edu/~aroth/papers/Gale%20and%20Shapley.revised.IJGT.pdf
> several applications in many languages, C++, JAVA,
> http://stackoverflow.com/questions/2526042/how-can-i-implement-the-gale-shapley-stable-marriage-algorithm-in-perl
> Perl , SQL, and so on. I manage to edit one version of it to R.2.13.1.
> So, I ask if it was allready implemented (I couldn't find any on R topic),
> and if there is models and manners to make it more efficiently, add errors
> check, options, etc.
>
> At Berkeley's http://mathsite.math.berkeley.edu/smp/smp.html MathSite
> there is a very straighfoward example of the algorithm and its steps.
>
> My implementation follow the principle:
>
> 1. All men (or women) seeks for their best partner.
>
> 2. If there is no tie in a column (or row), stop.
>
> 3. If there is a tie, removes the worst-partners-tied and seek again the
> second-best (till n-best) alternative.
>
> The function is working right up to 6x6 matrices. But it needs a lot of
> improvement.
>
> Here it is the "gsa" function:
>
> gsa(m, n, preference.row, preference.col, first)
>
> ###
> Where:
>
> m: for number of rows
> n: number of columns
> preference.row: matrix with preference ordered in its positions by row
> (see example).
> preference.col: matrix with preference ordered in its positions by column
> (see example).
> first: Who is the first to propose (1 to men, 2 to women).
> ########
>
> gsa <- function(m, n, preference.row, preference.col, first)
> {
> # m: number of rows (men)
> # n: number of columns (women)
> # first 1 for row (men); and 2 for column (women)
> #
> # Two Auxiliary functions:
> # 1:
> min.n <- function(x,n,value=TRUE){
> s <- sort(x, index.return=TRUE)
> if(value==TRUE){s$x[n]} else{s$ix[n]}}
>
> # 2:
>
> max.n <- function(x,n,value=TRUE){
> s <- sort(x, decreasing=TRUE, index.return=TRUE)
> if(value==TRUE){s$x[n]} else{s$ix[n]}}
> #############################################################
>
> s <- NULL
> test_s <-NULL
> loop <- 2 # O loop é necessário a partir do 2.
> step.1 <- matrix(0,ncol=n, nrow=m)
> step.2 <- matrix(0,ncol=n, nrow=m)
> store <- NULL
> r <- NULL
>
> # Men proposing first:
>
> if (first==1)
> {
> step.1 <- matrix(0,ncol=n, nrow=m)
> for (i in 1:n)
> {
> step.1[i,][preference.row[i,]==min.n(preference.row[i,],n=1)] <- 1
> }
> for (i in 1:n){s[i] <- sum(step.1[,i])}
> test_s <- s>1
> while (any(test_s==TRUE)==TRUE)
> {
> if (any(test_s==TRUE)==TRUE) {
> position1 <- which(s>1)
> position2 <- vector('list')
> position3 <- vector('list')
> position4 <- NULL
> position5 <- 1:m
> for (k in 1:length(position1)){position2[[k]] <-
> which(step.1[,position1[k]]==1)
> position3[[k]] <-
> which(preference.col[,position1[k]]>min(preference.col[position2[[k]],position1[k]]))
> x <- which(position3[[k]]%in%position2[[k]])
> position3[[k]] <- position3[[k]][x]
> step.1[position3[[k]],position1[k]] <- 0}
> for (t in 1:n){position4[t] <-
> if(sum(step.1[,t])==0){0}else{which(step.1[,t]==1)}}
> position4 <- position4[position4 >0]
> position5 <- position5[-position4]
> store <- append(position5, store)
> r <- rle(sort(store))
> for (j in
> position5){step.1[j,][preference.row[j,]==r$lengths[r$values==j]+1] <- 1}
> for (i in 1:n){s[i] <- sum(step.1[,i])}
> test_s <- s>1
> }else{
> step.1 <- matrix(0,ncol=m, nrow=n)
> for (i in 1:m){step.1[i,][preference.row[i,]==min(preference.row[i,])] <-
> 1}
> return(step.1)}
> loop <- loop + 1
> } #end of while
> }
>
> # Women proposing first:
>
> if (first==2)
> {
> step.2 <- matrix(0,ncol=n, nrow=m)
> for (i in 1:n)
> {
> step.2[,i][preference.col[,i]==min.n(preference.col[,i],n=1)] <- 1
> }
> for (i in 1:n){s[i] <- sum(step.2[i,])}
> test_s <- s>1
> while (any(test_s==TRUE)==TRUE)
> {
> if (any(test_s==TRUE)==TRUE) {
> position1 <- which(s>1)
> position2 <- vector('list')
> position3 <- vector('list')
> position4 <- NULL
> position5 <- 1:m
> for (k in 1:length(position1)){position2[[k]] <-
> which(step.2[position1[k],]==1)
> position3[[k]] <-
> which(preference.row[position1[k],]>min(preference.row[position1[k],position2[[k]]]))
> x <- which(position3[[k]]%in%position2[[k]])
> position3[[k]] <- position3[[k]][x]
> step.2[position1[k],position3[[k]]] <- 0}
> for (t in 1:n){position4[t] <-
> if(sum(step.2[t,])==0){0}else{which(step.2[t,]==1)}}
> position4 <- position4[position4 >0]
> position5 <- position5[-position4]
> store <- append(position5, store)
> r <- rle(store)
> for (j in
> position5){step.2[,j][preference.col[,j]==r$lengths[r$values==j]+1] <- 1}
> for (i in 1:n){s[i] <- sum(step.2[i,])}
> test_s <- s>1
> }else{
> step.2 <- matrix(0,ncol=m, nrow=n)
> for (i in 1:m){step.2[i,][preference.col[,i]==min(preference.col[,i])] <-
> 1}
> step.2}
> loop <- loop + 1
> } # End of 2nd while
> }
> if (first==1) {print(step.1)}
> if (first==2) {print(step.2)}
> }
>
> #####################
> # Here it goes one 4x4 example:
>
> m <- seq(1:4)
> n <- seq(1:4)
> preference.row <- matrix(0,ncol=length(m), nrow=length(m))
> preference.col <- matrix(0,ncol=length(n), nrow=length(n))
>
> for (i in 1:length(m))
> {
> preference.row[i,] <- sample(m, size=length(m), rep=FALSE)
> preference.col[,i] <- sample(n, size=length(n), rep=FALSE) # Note a
> orientação por coluna!
> }
> gsa(m = 4, n = 4, preference.row = preference.row, preference.col =
> preference.col, first=2)
>
> # The result is a zero-one matrix which indicates blocking pairs.
> ############################################################
>
> Thank you, and please let me know, any bugs and improvements.
>
I have implemented some changes to see "loop" iterations:
loop <- 1
if (first==1) {print(step.1)}
if (first==2) {print(step.2)}
print(loop)
}
And just added some Examples from Gale and Shapley (1962) College Admissions
And the Stability of Marriage:
# 1:
m1 <- c(1,2,3); m2 <- c(3,1,2); m3 <- c(2,3,1)
n1 <- c(3,1,2) ;n2 <- c(2,3,1); n3 <- c(1,2,3)
preference.row <- matrix(c(m1, m2, m3), ncol=3, byrow=TRUE)
preference.col <- matrix(c(n1, n2, n3), ncol=3)
gsa(m = 3, n = 3, preference.row = preference.row, preference.col =
preference.col, first=1)
gsa(m = 3, n = 3, preference.row = preference.row, preference.col =
preference.col, first=2)
# 2 :
m1 <- c(1,2,3,4) ; m2 <- c(1,4,3,2); m3 <- c(2,1,3,4); m4 <- c(4,2,3,1)
n1 <- c(3,4,2,1); n2 <- c(3,1,4,2); n3 <- c(2,3,4,1); n4 <- c(3,2,1,4)
preference.row <- matrix(c(m1, m2, m3, m4), ncol=4, byrow=TRUE)
preference.col <- matrix(c(n1, n2, n3, n4), ncol=4)
gsa(m = 4, n = 4, preference.row = preference.row, preference.col =
preference.col, first=1)
gsa(m = 4, n = 4, preference.row = preference.row, preference.col =
preference.col, first=2)
#3:
m1 <- c(1,2,3,4); m2 <- c(1,2,3,4); m3 <- c(3,1,2,4); m4 <- c(2,3,1,4)
n1 <- c(3,4,1,2); n2 <- c(2,3,4,1); n3 <- c(1,2,3,4); n4 <- c(3,4,2,1)
preference.row <- matrix(c(m1, m2, m3, m4), ncol=4, byrow=TRUE)
preference.col <- matrix(c(n1, n2, n3, n4), ncol=4)
gsa(m = 4, n = 4, preference.row = preference.row, preference.col =
preference.col, first=1)
gsa(m = 4, n = 4, preference.row = preference.row, preference.col =
preference.col, first=2)
-----
Victor Delgado
cedeplar.ufmg.br P.H.D. student
www.fjp.mg.gov.br reseacher
--
View this message in context: http://r.789695.n4.nabble.com/Gale-Shapley-Algorithm-for-R-tp4240809p4243220.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list