[R] slow computation of functions over large datasets

Ken vicvoncastle at gmail.com
Wed Aug 3 20:01:38 CEST 2011


Hello, 
  Perhaps transpose the table attach(as.data.frame(t(data))) and use ColSums() function with order id as header.
             -Ken Hutchison

On Aug 3, 2554 BE, at 1:12 PM, David Winsemius <dwinsemius at comcast.net> wrote:

> 
> On Aug 3, 2011, at 12:20 PM, jim holtman wrote:
> 
>> This takes about 2 secs for 1M rows:
>> 
>>> n <- 1000000
>>> exampledata <- data.frame(orderID = sample(floor(n / 5), n, replace = TRUE), itemPrice = rpois(n, 10))
>>> require(data.table)
>>> # convert to data.table
>>> ed.dt <- data.table(exampledata)
>>> system.time(result <- ed.dt[
>> +                         , list(total = sum(itemPrice))
>> +                         , by = orderID
>> +                         ]
>> +            )
>>  user  system elapsed
>>  1.30    0.05    1.34
> 
> Interesting. Impressive. And I noted that the OP wanted what cumsum would provide and for some reason creating that longer result is even faster on my machine than the shorter result using sum.
> 
> -- 
> David.
>>> 
>>> str(result)
>> Classes ‘data.table’ and 'data.frame':  198708 obs. of  2 variables:
>> $ orderID: int  1 2 3 4 5 6 8 9 10 11 ...
>> $ total  : num  49 37 72 92 50 76 34 22 65 39 ...
>>> head(result)
>>    orderID total
>> [1,]       1    49
>> [2,]       2    37
>> [3,]       3    72
>> [4,]       4    92
>> [5,]       5    50
>> [6,]       6    76
>>> 
>> 
>> 
>> On Wed, Aug 3, 2011 at 9:25 AM, Caroline Faisst
>> <caroline.faisst at gmail.com> wrote:
>>> Hello there,
>>> 
>>> 
>>> I’m computing the total value of an order from the price of the order items
>>> using a “for” loop and the “ifelse” function. I do this on a large dataframe
>>> (close to 1m lines). The computation of this function is painfully slow: in
>>> 1min only about 90 rows are calculated.
>>> 
>>> 
>>> The computation time taken for a given number of rows increases with the
>>> size of the dataset, see the example with my function below:
>>> 
>>> 
>>> # small dataset: function performs well
>>> 
>>> exampledata<-data.frame(orderID=c(1,1,1,2,2,3,3,3,4),itemPrice=c(10,17,9,12,25,10,1,9,7))
>>> 
>>> exampledata[1,"orderAmount"]<-exampledata[1,"itemPrice"]
>>> 
>>> system.time(for (i in 2:length(exampledata[,1]))
>>> {exampledata[i,"orderAmount"]<-ifelse(exampledata[i,"orderID"]==exampledata[i-1,"orderID"],exampledata[i-1,"orderAmount"]+exampledata[i,"itemPrice"],exampledata[i,"itemPrice"])})
>>> 
>>> 
>>> # large dataset: the very same computational task takes much longer
>>> 
>>> exampledata2<-data.frame(orderID=c(1,1,1,2,2,3,3,3,4,5:2000000),itemPrice=c(10,17,9,12,25,10,1,9,7,25:2000020))
>>> 
>>> exampledata2[1,"orderAmount"]<-exampledata2[1,"itemPrice"]
>>> 
>>> system.time(for (i in 2:9)
>>> {exampledata2[i,"orderAmount"]<-ifelse(exampledata2[i,"orderID"]==exampledata2[i-1,"orderID"],exampledata2[i-1,"orderAmount"]+exampledata2[i,"itemPrice"],exampledata2[i,"itemPrice"])})
>>> 
>>> 
>>> 
>>> Does someone know a way to increase the speed?
>>> 
>>> 
>>> Thank you very much!
>>> 
>>> Caroline
>>> 
>>>       [[alternative HTML version deleted]]
>>> 
>>> 
>>> ______________________________________________
>>> R-help at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>> 
>>> 
>> 
>> 
>> 
>> -- 
>> Jim Holtman
>> Data Munger Guru
>> 
>> What is the problem that you are trying to solve?
>> 
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
> 
> David Winsemius, MD
> West Hartford, CT
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



More information about the R-help mailing list