[R] Model formula for ols function (rms package)
Frank Harrell
f.harrell at vanderbilt.edu
Wed Apr 13 00:42:49 CEST 2011
For the first example you want the restricted interaction operator: y ~
rcs(x1, 3) + rcs(x2, 3) + rcs(x1, 3) %ia% rcs(x2, 3).
For the second example use pol(x,2) or something like pol(x1,2) + pol(x2,2)
+ pol(x1, 2) %ia% pol(x2, 2)
If you have to create new variables for R formulas you're usually doing
something wrong.
Frank
Mark Seeto wrote:
>
> Dear R help,
>
> I'm having some trouble with model formulas for the ols function in
> the rms package. I want to have two variables represented as
> restricted cubic splines, and also include an interaction as a product
> of linear terms, but I get an error message.
>
> library(rms)
> d <- data.frame(x1 = rnorm(50), x2 = rnorm(50), y = rnorm(50))
>
> ols(y ~ rcs(x1,3) + rcs(x2,3) + x1*x2, data=d)
> Error in if (!length(fname) || !any(fname == zname)) { :
> missing value where TRUE/FALSE needed
>
> ols(y ~ rcs(x1,3) + rcs(x2,3) + I(x1*x2), data=d)
> Error in if (!length(fname) || !any(fname == zname)) { :
> missing value where TRUE/FALSE needed
>
> I get the same error if I try to fit a model with a quadratic term:
>
> ols(y ~ x1 + I(x1^2), data=d)
> Error in if (!length(fname) || !any(fname == zname)) { :
> missing value where TRUE/FALSE needed
>
> ols(y ~ I(x1^2), data=d) # No error message, but lacks linear term
>
> Is there a way to do these things without first creating new variables
> in the data frame?
>
> Thanks,
>
> Mark Seeto
> National Acoustic Laboratories
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
-----
Frank Harrell
Department of Biostatistics, Vanderbilt University
--
View this message in context: http://r.789695.n4.nabble.com/Model-formula-for-ols-function-rms-package-tp3445830p3445845.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list