[R] How to speed up grouping time series, help please
Den Alpin
den.alpin at gmail.com
Mon Apr 4 14:49:17 CEST 2011
I retrieve for a few hundred times a group of time series (10-15 ts
with 10000 values each), on every group I do some calculation, graphs
etc. I wonder if there is a faster method than what presented below to
get an appropriate timeseries object.
Making a query with RODBC for every group I get a data frame like this:
> X
ID DATE VALUE
14 3 2000-01-01 00:00:03 0.5726334
4 1 2000-01-01 00:00:03 0.8830174
1 1 2000-01-01 00:00:00 0.2875775
15 3 2000-01-01 00:00:04 0.1029247
11 3 2000-01-01 00:00:00 0.9568333
9 2 2000-01-01 00:00:03 0.5514350
7 2 2000-01-01 00:00:01 0.5281055
6 2 2000-01-01 00:00:00 0.0455565
12 3 2000-01-01 00:00:01 0.4533342
8 2 2000-01-01 00:00:02 0.8924190
3 1 2000-01-01 00:00:02 0.4089769
13 3 2000-01-01 00:00:02 0.6775706
And I want to get a timeSeries object or xts object like this:
1 2 3
2000-01-01 00:00:00 0.2875775 0.0455565 0.9568333
2000-01-01 00:00:01 NA 0.5281055 0.4533342
2000-01-01 00:00:02 0.4089769 0.8924190 0.6775706
2000-01-01 00:00:03 0.8830174 0.5514350 0.5726334
2000-01-01 00:00:04 NA NA 0.1029247
Input data can be sorted or unsorted (the most complicated case is in
the example, unsorted and missing data) in the sense that I can sort
in query if I can take an advantage from this.
Some considerations:
- Xts is generally faster than timeSeries
- both accept a matrix so if I can create a matrix like the one
represented above and an array of characters representing dates faster
than what possible with xts:::cbind, for examole,I will have a faster
implementation (package data.table ?).
- create timeseries objects in multithread and then merge (package plyr ?)
- faster merge algorithms?
Below some code to generate the test case above:
set.seed(123)
N <- 5 # number of observations
K <- 3 # number of timeseries ID
X <- data.frame(
ID = rep(1:K, each = N),
DATE = as.character(rep(as.POSIXct("2000-01-01", tz = "GMT")+ 0:(N-1), K)),
VALUE = runif(N*K), stringsAsFactors = FALSE)
X <- X[sample(1:(N*K), N*K),] # sample observations to get random
order (optional)
X <- X[-(sample(1:nrow(X), floor(nrow(X)*0.2))),] # 20% missing
head(X, 15)
# use explicitly environments to avoid '<<-'
buildTimeSeriesFromDataFrame <- function(x, env)
{
{
if(exists("xx", envir = env)) # if exist variable xx in env cbind
assign("xx",
cbind(get("xx", env), timeSeries(x$VALUE, x$DATE,
format = '%Y-%m-%d %H:%M:%S',
zone = 'GMT', units = as.character(x$ID[1]))),
envir = env)
else # create xx in env
assign("xx",
timeSeries(x$VALUE, x$DATE, format = '%Y-%m-%d %H:%M:%S',
zone = 'GMT', units = as.character(x$ID[1])),
envir = env)
return(TRUE)
}
}
# use package plyr, faster than 'by' function
tsDaply <- function(...)
{
library(plyr)
e1 <- new.env(parent = baseenv()) #create a new env
res <- daply(X, "ID", buildTimeSeriesFromDataFrame,
env = e1)
return(get("xx", e1)) # return xx from env
}
##replicate 100 times
#Time03 <- replicate(100,
# system.time(tsDaply(X, X$ID))[[1]])
#median(Time03)
# result
tsDaply(X, X$ID)
Thanks in advance for any input, best regards,
Den
More information about the R-help
mailing list