[R] one step just of cliff-- zero hessian matrix in optim, with reproducable code and data

Ravi Varadhan rvaradhan at jhmi.edu
Sun Sep 19 17:02:41 CEST 2010


You get NaNs in the standard error computations because the diagonal of inverse of hessian has a negative element.  This could be due to 2 reasons:  (1) your hessian is truly indefinite (some negative eigenvalues), or (2) the hessian computation in optim is not sufficiently accurate.  I have run into (2) before.  I prefer using `numDeriv' package for hessian calculation at the MLE to obtain standard errors.  It is highly accurate.  So, I would recommend that you try `numDeriv'.

require(numDeriv)
?hessian

Hope this helps,
Ravi.
____________________________________________________________________

Ravi Varadhan, Ph.D.
Assistant Professor,
Division of Geriatric Medicine and Gerontology
School of Medicine
Johns Hopkins University

Ph. (410) 502-2619
email: rvaradhan at jhmi.edu


----- Original Message -----
From: Hey Sky <heyskywalker at yahoo.com>
Date: Saturday, September 18, 2010 8:23 pm
Subject: Re: [R] one step just of cliff-- zero hessian matrix in optim, with reproducable code and data
To: Ravi Varadhan <rvaradhan at jhmi.edu>
Cc: R <r-help at r-project.org>


> Dear Ravi
> 
> thanks for your reply. I think the number of obs may do be the problem 
> for a 
> zero hessian matrix. since it is simulated data, I have increased the 
> sample 
> size to 500 obs and tried for around 20 times, the zero hessian did 
> not appear, 
> compared with the fact that it happens too often with only 50 obs. my 
> real data 
> is a confendential one so I only be able to try the simulated one for 
> 
> a discussion here. 
> 
> 
> but what may lead to the NaN in std.err, or the negative variance when 
> I inverse 
> the hessian matrix? the R code is translated from a Fortran code, 
> which has been 
> used for a long time, thus the model should be ok. besides a more 
> reasonable 
> initial value, whatelse do you think it might be the reasons and what 
> do you 
> suggest?
> 
> thanks for your time
> Nan
> 
> 
> 
>  
> 
> 
> ----- Original Message ----
> From: Ravi Varadhan <rvaradhan at jhmi.edu>
> To: Hey Sky <heyskywalker at yahoo.com>
> Cc: R <r-help at r-project.org>
> Sent: Sat, September 18, 2010 4:03:41 PM
> Subject: Re: [R] one step just of cliff-- zero hessian matrix in 
> optim, with 
> reproducable code and data
> 
> I was able to get proper convergence in "BFGS", when I use the 
> starting value 
> from Nelder-Mead with 5000 iterations.
> 
> However, the hessian is not positive-definite.  This indicates that 
> you have a 
> problem in your model.  It seems to me that the model is 
> over-parametrized.  You 
> have 20-odd parameters, but only 50 independent data points (I presume 
> these are 
> 50 time-series).  In short, there is nothing wrong with optimization 
> algorithms, 
> but there is something not right with your model.
> 
> Ravi.
> 
> ____________________________________________________________________
> 
> Ravi Varadhan, Ph.D.
> Assistant Professor,
> Division of Geriatric Medicine and Gerontology
> School of Medicine
> Johns Hopkins University
> 
> Ph. (410) 502-2619
> email: rvaradhan at jhmi.edu
> 
> 
> ----- Original Message -----
> From: Hey Sky <heyskywalker at yahoo.com>
> Date: Saturday, September 18, 2010 11:38 am
> Subject: [R] one step just of cliff-- zero hessian matrix in optim, 
> with 
> reproducable code and data
> To: R <r-help at r-project.org>
> 
> 
> > Hey, R Users
>> >  a few days ago I have met a zero hessian with optim command. I 
> > reproduced it 
> >  with simulated data. plz check the code and data at the bottom of 
> the 
> > post. I 
> >  also attachment them with this email. hope it can reduce some 
> > workload as 
> >  copying and pasting.
>> >  I have simunated data many times and I do get convegence sometime 
> and 
> > hessian 
> >  matrix performs good. so, it would not be the problem of code lead 
> to 
> > this (I 
> >  may be wrong). 
>>> >  the error happens when the optim use a too large step to make some 
> 
> > values in the 
> >  optimization way too big and it never come back to normal again. 
> the 
> > values 
> >  before and after it happens as following: 
>>> >  values in the first part are reasonable. in the second part the W 
> > value jumped 
> >  too large and lead to v8=Inf, which has been calculated from vbar2 
> 
> > and vbar3. 
> >  and after that, even W come back to a little reasonable value (due 
> to 
> > simulated 
> >  value, I am not picky on it), the v8 is too large and lead to a 
> zero 
> > ccl 
> >  value all after that. 
>>> >  what may lead to this and any possible way to solve it? any 
> > suggestion are 
> >  appreciated.
>> >  **** values that jump *****
> >  w= 0.3157054 0.3678553 0.7879715 0.2859902 1.290479 
> >  vbar2= -0.04085177 0.1922226 0.1922226 -0.04228498 0.1907894 
> > -0.0437182 
> >  -0.2782258 -0.2782258 
>> >  vbar3= -0.2226825 -0.2034284 -0.2034284 -0.06159623 -0.04234212 
> > 0.09949002 
> >  0.2413222 0.2413222 
>> >  v8= 2.760340 3.027869 3.027869 2.898859 3.168746 3.061831 3.030057 
> 
> > 3.030057 
> >  lia= 0.289953 0.4002618 0.3302653 0.3243560 0.381919 0.3607669 
> > 0.4201014 
> >  0.3300268 
>> >  wden= 1 0.2227371 1 1 0.297258 1 1 1 
> >  lnw= 2.620900 2.1615 3.803036 3.533042 3.519460 2.328614 
> >  regw= 1.260287 1.575992 1.575992 1.943847 2.259553 2.627408 
> 2.995263 
> > 2.995263 
> >  ccl= 1.546739e-05 1.134482e-05 4.232217e-06 0.0003085958 
> 8.65926e-08 
> > 
> >  6.858387e-07 1.572476e-05 
>> >  --------------- 
> >  w= 71.7346 55.43801 55.13785 9.297906 -14.24756 
> >  vbar2= -13725.15 -14549.52 -14549.52 -15240.92 -16065.29 -16756.70 
> 
> > -17448.10 
> >  -17448.10 
>> >  vbar3= 15329.20 17870.51 17870.51 19927.61 22468.92 24526.02 
> 26583.12 
> > 26583.12 
> >  v8= Inf Inf Inf Inf Inf Inf Inf Inf 
> >  lia= NaN 0 0 NaN 0 NaN NaN 0 
> >  wden= 1 -6.84084e-33 1 1 -3.222512e-96 1 1 1 
> >  lnw= 2.620900 2.1615 3.803036 3.533042 3.519460 2.328614 
> >  regw= 100.0510 171.7856 171.7856 227.2236 298.9582 354.3962 
> 409.8342 
> > 409.8342 
> >  ccl= NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
> >  --------------- 
> >  w= 14.59949 11.38189 11.65795 2.088373 -1.816329 
> >  vbar2= -2559.668 -2586.704 -2586.704 -2619.031 -2646.067 -2678.394 
> 
> > -2710.722 
> >  -2710.722 
>> >  vbar3= 2521.011 2623.554 2623.554 2722.231 2824.774 2923.451 
> 3022.128 
> > 3022.128 
> >  v8= Inf Inf Inf Inf Inf Inf Inf Inf 
> >  lia= NaN 0 0 NaN 0 NaN NaN 0 
> >  wden= 1 -9.797435e-83 1 1 -2.080056e-247 1 1 1 
> >  lnw= 2.620900 2.1615 3.803036 3.533042 3.519460 2.328614 
> >  regw= 23.17728 37.77676 37.77676 49.15865 63.75813 75.14002 86.5219 
> 
> > 86.5219 
> >  ccl= NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
> >  --------------- 
> >  w= 3.172461 2.570661 2.961967 0.6464669 0.6699175 
> >  vbar2= -503.5519 -503.2665 -503.2665 -505.674 -505.3886 -507.796 
> > -510.2035 
> >  -510.2035 
>> >  vbar3= 479.2945 483.5891 483.5891 490.9237 495.2183 502.553 
> 509.8877 
> > 509.8877 
> >  v8= 1.428720e+208 1.047267e+210 1.047267e+210 1.604982e+213 
> > 1.176469e+215 
> >  1.802990e+218 
>> >  lia= 1 0 9.548661e-211 1 0 1 1 3.619044e-222 
> >  wden= 1 4.817837e-20 1 1 6.500612e-71 1 1 1 
> >  lnw= 2.620900 2.1615 3.803036 3.533042 3.519460 2.328614 
> >  regw= 5.730039 8.9025 8.9025 11.47316 14.64562 17.21628 19.78695 
> > 19.78695 
> >  ccl= 0 0 0 0 0 0 0 0 0 0 0 0 
>>>> >  ---------------------------------------------
> >  code and data also attached with this email
>> >  #**************
> >  # the main function
> >  mymat<-function(par,data) {
>> >  # define the parameter matrix used in following part
> >  vbar2<-matrix(0,n,nt)
> >  vbar3<-matrix(0,n,nt)
> >  v8 <-matrix(0,n,nt)
> >  regw<-matrix(0,n,nt)
> >  wden<-matrix(0,n,nt)
> >  lia<-matrix(0,n,nt)
> >  ccl<-matrix(1,n,ns)
> >  eta<-c(0,0)
>> >  # setup the parts for loglikelihood
> >  q1<-exp(par[1])
> >  pr1<-q1/(1+q1)
> >  pr2<-1-pr1
>> >  eta[2]<-par[2]
>> >  a<-par[3:10]
> >  b<-par[11:19]
> >  w<-par[20:npar]
>> >  for(m in 1:ns){
> >      regw<-w[1]*acwrk+w[2]*actr+w[3]+w[4]*eta[m]
> >   
> >      vbar2=a[1]+     
>> >eta[m]+a[2]*acwrk+a[3]*actr+a[4]*edu+a[5]*v_refg+a[6]*v_econ+a[7]*age+regw*a[8]
> >      
>> >vbar3=b[1]+b[2]*eta[m]+b[3]*acwrk+b[4]*actr+b[5]*edu+b[6]*v_refg+b[7]*v_econ+b[8]*age+regw*b[9]
> >
>> >      
> >      v8=1+exp(vbar2)+exp(vbar3)
>> >      lia<-ifelse(home==1,1/v8,
> >       ifelse(wrk==1,exp(vbar2)/v8,
> >        ifelse(tr==1,exp(vbar3)/v8,1)))
>> >      wden<-ifelse(wrk==1,dnorm((lnw-regw)/w[5])/w[5],1)
>> >  ccl[,m]<-lia[,1]*lia[,2]*lia[,3]*lia[,4]*lia[,5]*lia[,6]*lia[,7]*lia[,8]*
> >   wden[,1]*wden[,2]*wden[,3]*wden[,4]*wden[,5]*wden[,6]*wden[,7]*wden[,8]
> >  }
>> >  #****************************
> >  #cat("w=",w, "\n")
> >  #cat("vbar2=",vbar2[1,], "\n")
> >  #cat("vbar3=",vbar3[1,], "\n")
> >  #cat("v8=",v8[1,], "\n")
> >  #cat("lia=",lia[1,], "\n")
> >  #cat("wden=",wden[1,], "\n")
> >  #cat("lnw=",head(lnw), "\n")
> >  #cat("regw=",regw[1,], "\n")
> >  #cat("ccl=",ccl[1:6,], "\n")
> >  #cat("---------------", "\n")
> >  #****************************
>> >  func<-pr1*ccl[,1]+pr2*ccl[,2]
> >  func<-ifelse(func<.Machine$double.xmin,0.00001,func)
> >  f<-sum(log(func))
> >  return(-f)
> >  }
>> >  #*********************************
> >  mydata<-read.table("F:/check the 0 hessian matrix 
> > mistake/mydata9x.txt", head=F)
> >  nt<<-8     # number of periods
> >  ns<<-2    # number of person type
> >  n<<-50     # number of people
> >  npar<<-24 # number of parameters
>> >  id<-as.numeric(mydata[,1])
> >  tr<-as.matrix(mydata[,2:(nt+1)])
> >  wrk<-as.matrix(mydata[,(nt+2):(2*nt+1)])
> >  home<-as.matrix(mydata[,(2*nt+2):(3*nt+1)])
> >  actr<-as.matrix(mydata[,(3*nt+2):(4*nt+1)])
> >  acwrk<-as.matrix(mydata[,(4*nt+2):(5*nt+1)])
> >  lnw<-as.numeric(mydata[,5*nt+2])
> >  edu<-as.numeric(mydata[,5*nt+3])
> >  age<-as.numeric(mydata[,5*nt+4])
> >  v_refg<-as.numeric(mydata[,5*nt+5])
> >  v_econ<-as.numeric(mydata[,5*nt+6])
>> >  # the initial guess  
> >  guess<-rep(0.5,times=npar)
> >  guess[npar]<-1.0
>> >  # use "Nelder-Mead" to get the initial value
> >  system.time(r1<-optim(guess,mymat,data=mydata, hessian=F))
> >  guess<-r1$par
>> >  system.time(r2<-optim(guess,mymat,data=mydata, 
> > method="BFGS",hessian=T, 
> >    control=list(trace=T, maxit=1000)))
>> >  std.err<-sqrt(diag(solve(r2$hessian)))
> >  res<-cbind(r2$par,std.err,r2$par/std.err)
> >  colnames(res)<-c("parameter","std.err","t test")
>>>> >  -------------------------------------------------
> >  the data
> >  "1" 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 2 2 3 4 4 
> 0 
> > 1 1 1 2 2 
> >  2 2 2.62089951476082 16 29 0 0
> >  "2" 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 2 2 3 3 3 3 3 
> 0 
> > 0 0 0 1 1 
> >  1 2 2.16150014568120 4 19 1 0
> >  "3" 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 2 3 3 4 4 5 6 
> 0 
> > 0 0 1 1 2 
> >  2 2 3.80303575377911 16 26 1 0
> >  "4" 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 2 3 4 5 6 
> 0 
> > 1 1 1 1 1 
> >  1 1 3.53304197313264 16 41 0 1
> >  "5" 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 2 3 
> 1 
> > 2 3 3 3 3 
> >  3 3 3.51945951068774 3 35 0 0
> >  "6" 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 
> 1 
> > 2 2 3 3 3 
> >  4 5 2.32861361233518 17 22 0 1
> >  "7" 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 2 3 3 3 4 4 4 
> 0 
> > 0 0 0 0 0 
> >  0 1 2.89729301305488 14 26 0 1
> >  "8" 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 2 2 3 3 3 
> 1 
> > 2 2 2 2 2 
> >  2 2 2.86090020649135 4 22 0 0
> >  "9" 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 2 3 4 4 5 
> 0 
> > 0 1 1 1 1 
> >  2 2 2.59020843589678 17 23 0 0
> >  "10" 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 2 3 4 4 5 
> 5 
> > 1 1 1 1 1 1 
> >  1 1 3.6295328931883 5 22 0 0
> >  "11" 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 2 
> 3 
> > 1 2 3 3 4 4 
> >  4 4 2.02498448966071 11 26 0 1
> >  "12" 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 2 3 3 3 4 4 
> 5 
> > 0 0 0 1 2 2 
> >  3 3 3.25450395001099 13 31 0 1
> >  "13" 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 2 3 3 3 
> 4 
> > 0 0 0 0 0 1 
> >  2 2 2.37046055402607 14 33 0 1
> >  "14" 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 2 
> 3 
> > 1 2 2 3 3 3 
> >  3 3 2.87286716327071 9 23 1 0
> >  "15" 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 2 2 3 4 5 5 
> 5 
> > 0 0 1 1 1 1 
> >  2 3 2.90179902175441 15 36 0 1
> >  "16" 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 2 2 2 2 2 2 
> 3 
> > 0 0 1 2 3 4 
> >  4 4 3.32979543972760 6 25 0 0
> >  "17" 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 
> 2 
> > 1 1 1 2 2 3 
> >  3 3 2.36153599619865 17 45 0 1
> >  "18" 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 2 2 2 2 3 
> 3 
> > 0 1 1 2 2 3 
> >  3 4 3.63236659532413 3 41 1 0
> >  "19" 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 2 3 4 5 
> 5 
> > 0 0 1 2 2 2 
> >  2 3 3.69187993369997 2 41 0 0
> >  "20" 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 2 2 2 3 4 
> 4 
> > 1 1 1 2 3 3 
> >  3 4 2.01738612353802 8 33 0 0
> >  "21" 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 
> 8 
> > 0 0 0 0 0 0 
> >  0 0 3.50919563509524 13 22 0 0
> >  "22" 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 2 3 4 
> 4 
> > 0 1 2 2 2 2 
> >  2 3 3.14363623457029 5 33 0 1
> >  "23" 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 2 
> 3 
> > 0 1 1 2 3 4 
> >  4 4 2.78580305865034 11 19 1 0
> >  "24" 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 2 2 3 4 4 5 
> 6 
> > 0 0 0 0 0 0 
> >  0 0 3.91743207862601 9 40 0 1
> >  "25" 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 3 4 5 5 
> 6 
> > 0 0 0 1 1 1 
> >  1 1 3.63302375609055 16 33 0 1
> >  "26" 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 4 5 6 
> 7 
> > 0 0 0 1 1 1 
> >  1 1 2.28801752673462 3 32 0 1
> >  "27" 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 2 2 3 
> 4 
> > 0 0 0 0 0 1 
> >  1 1 2.45849566301331 12 18 1 0
> >  "28" 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 2 
> 3 
> > 1 1 2 2 2 2 
> >  2 2 2.74557595746592 8 42 0 0
> >  "29" 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 2 2 2 2 3 
> 3 
> > 0 0 0 1 1 2 
> >  2 2 2.00150080351159 15 32 1 0
> >  "30" 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 2 2 2 2 2 
> 2 
> > 0 1 1 2 2 3 
> >  3 3 2.72582565387711 14 19 0 1
> >  "31" 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 2 2 2 
> 3 
> > 0 0 0 1 1 2 
> >  3 3 2.88708175066859 10 34 0 0
> >  "32" 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 2 3 3 3 4 5 
> 6 
> > 0 0 0 0 0 0 
> >  0 0 2.24319696752355 6 39 0 0
> >  "33" 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 2 2 2 3 3 
> 3 
> > 0 0 0 0 1 1 
> >  1 2 2.6321357563138 16 35 0 1
> >  "34" 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 2 2 3 
> 4 
> > 0 1 1 2 2 3 
> >  3 3 3.26070732064545 17 28 0 1
> >  "35" 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 
> 1 
> > 0 0 0 0 1 1 
> >  2 2 3.4693668698892 7 39 0 0
> >  "36" 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 2 3 4 5 
> 5 
> > 0 0 0 0 0 0 
> >  0 0 2.60646418808028 10 22 0 1
> >  "37" 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 
> 0 
> > 0 0 1 2 2 2 
> >  2 3 3.45602289121598 15 28 0 1
> >  "38" 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 2 3 4 5 5 5 
> 5 
> > 0 0 0 0 0 1 
> >  1 2 3.03841971792281 6 41 0 0
> >  "39" 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 2 3 3 4 4 
> 5 
> > 0 0 0 0 1 1 
> >  1 1 2.90754798706621 4 36 0 0
> >  "40" 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 2 2 2 2 3 4 
> 4 
> > 0 0 0 1 1 1 
> >  1 2 3.69572683610022 11 19 0 1
> >  "41" 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2 2 3 4 4 
> 5 
> > 0 1 1 2 2 2 
> >  2 2 2.81628963444382 2 36 0 1
> >  "42" 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 2 3 3 4 
> 5 
> > 0 0 0 0 0 1 
> >  1 1 2.94380070734769 17 31 0 1
> >  "43" 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 2 2 3 
> 4 
> > 0 1 1 1 1 2 
> >  2 2 2.50514903757721 8 38 0 0
> >  "44" 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 2 
> 2 
> > 0 0 1 2 2 2 
> >  2 3 3.39924295153469 3 19 0 0
> >  "45" 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 2 3 3 
> 3 
> > 0 1 2 3 3 3 
> >  4 5 2.29968624887988 8 32 0 1
> >  "46" 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 2 3 
> 4 
> > 0 1 2 2 2 2 
> >  2 2 2.58306567557156 15 27 0 1
> >  "47" 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 3 3 4 4 5 
> 6 
> > 0 0 0 0 0 1 
> >  1 1 3.99967893399298 6 42 0 1
> >  "48" 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 2 3 
> 3 
> > 0 0 0 0 1 1 
> >  1 1 3.6599674411118 10 21 0 0
> >  "49" 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 3 3 3 
> 3 
> > 1 1 1 1 1 1 
> >  1 1 2.35007652500644 1 30 0 0
> >  "50" 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 2 2 3 4 4 5 
> 5 
> > 0 0 0 0 0 0 
> >  0 0 2.07408210681751 9 38 1 0
>> > ______________________________________________
>R-help at r-project.org mailing list
>> >  PLEASE do read the posting guide 
> >  and provide commented, minimal, self-contained, reproducible code.
> 
> 
> 
>



More information about the R-help mailing list