[R] Linear Regression
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Oct 12 15:18:34 CEST 2010
Dear Vittorio,
Notice that anova(regress) gives a warning: ANOVA F-tests on an
essentially perfect fit are unreliable
Maybe summary(regress) should give a similar warning in case of a
perfect fit. Allthough you should notice that the residual standard
error displayed by summary() is extremly small. Which indicates that
something might be wrong.
HTH,
Thierry
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx op inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
> -----Oorspronkelijk bericht-----
> Van: r-help-bounces op r-project.org
> [mailto:r-help-bounces op r-project.org] Namens Vittorio Colagrande
> Verzonden: dinsdag 12 oktober 2010 15:01
> Aan: r-help op r-project.org
> Onderwerp: [R] Linear Regression
>
> Dear R-group,
>
> We have begun to use it for teaching Statistics. In this
> context we have run into a problem with linear regression
>
> where we found the results of are confusing.
>
> Specifically, considering the data:
>
>
>
> x=c(4,5,6,3,7,8,10,14,13,15,6,7,8,10,11,4,5,17,12,11)
>
> y=c(rep(7,20))
>
>
>
> and settings
>
>
>
> regress=lm(y~x)
>
>
>
> summary(regress) gives the following results:
>
>
>
> Estimate Std. Error t value Pr(>|t|)
>
> (Intercept) 7.000e+00 8.623e-17 8.118e+16 <2e-16 ***
>
> x -1.116e-17 8.956e-18 -1.247e+00 0.229
>
> ---
>
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
>
>
> Residual standard error: 1.565e-16 on 18 degrees of freedom
>
> Multiple R-squared: 0.6416, Adjusted R-squared: 0.6217
>
>
>
> Other statistical packages respond that the analysis can not
> be done. We think that the results of R-squared
>
> does not seem to express the variability of y explained by x.
> We would greatly appreciate any clarification you
>
> could provide.
>
>
>
> Thanks you and best regards.
>
> Marta di Nicola e Colagrande Vittorio
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help op r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
More information about the R-help
mailing list