# [R] Help with apply

Gabriela Cendoya gabrielacendoya.rlist at gmail.com
Mon Oct 4 19:44:11 CEST 2010

```You are missing "s" in your definitions so I can't reproduce your code.

> tmp <- data.frame(var1 = sample(c(0:10), 3, replace = TRUE), var2 = sample(c(0:10), 3, replace = TRUE), var3 = sample(c(0:10), 3, replace = TRUE))
>
> str(tmp)
'data.frame':   3 obs. of  3 variables:
\$ var1: int  9 3 9
\$ var2: int  4 6 2
\$ var3: int  2 9 3
>
> #I can run the following double loop and yield what I want in the end (rr1) as:
>
> library(statmod)
> Q <- 2
> b <- runif(3)
> qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma=1)
> rr1 <- matrix(0, nrow = Q, ncol = nrow(tmp))
> L <- nrow(tmp)
> for(j in 1:Q){
+     for(i in 1:L){
+         rr1[j,i] <- exp(sum(log((exp(tmp[i,]*(qq\$nodes[j]-b))) /
(factorial(tmp[i,]) *
+         exp(exp(qq\$nodes[j]-b)))))) * ((1/(s*sqrt(2*pi)))  *
exp(-((qq\$nodes[j]-0)^2/(2*s^2))))/dnorm(qq\$nodes[j]) * qq\$weights[j]
+                                                }
+                                }
> rr1
[,1] [,2] [,3]
[1,]    0    0    0
[2,]    0    0    0
>

Gabriela

2010/10/4, Doran, Harold <HDoran at air.org>:
> Suppose I have the following data:
>
> tmp <- data.frame(var1 = sample(c(0:10), 3, replace = TRUE), var2 =
> sample(c(0:10), 3, replace = TRUE), var3 = sample(c(0:10), 3, replace =
> TRUE))
>
> I can run the following double loop and yield what I want in the end (rr1)
> as:
>
> library(statmod)
> Q <- 2
> b <- runif(3)
> qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma=1)
> rr1 <- matrix(0, nrow = Q, ncol = nrow(tmp))
> L <- nrow(tmp)
>                 for(j in 1:Q){
>                                                 for(i in 1:L){
>                                                                 rr1[j,i] <-
> exp(sum(log((exp(tmp[i,]*(qq\$nodes[j]-b))) / (factorial(tmp[i,]) *
> exp(exp(qq\$nodes[j]-b)))))) *
>
> ((1/(s*sqrt(2*pi)))  * exp(-((qq\$nodes[j]-0)^2/(2*s^2))))/dnorm(qq\$nodes[j])
> * qq\$weights[j]
>                                                 }
>                                 }
> rr1
>
> But, I think this is so inefficient for large Q and nrow(tmp). The function
> I am looping over is:
>
> fn <- function(x, nodes, weights, s, b) {
>                 exp(sum(log((exp(x*(nodes-b))) / (factorial(x) *
> exp(exp(nodes-b)))))) *
>                 ((1/(s*sqrt(2*pi)))  *
> exp(-((nodes-0)^2/(2*s^2))))/dnorm(nodes) * weights
>                 }
>
> I've tried using apply in a few ways, but I can't replicate rr1 from the
> double loop. I can go through each value of Q one step at a time and get
> matching values in the rr1 table, but this would still require a loop and
> that I think can be avoided.
>
> apply(tmp, 1, fn, nodes = qq\$nodes[1], weights = qq\$weights[1], s = 1, b =
> b)
>
> Does anyone see an efficient way to compute rr1 without a loop?
>
> Harold
>
>> sessionInfo()
> R version 2.10.1 (2009-12-14)
> i386-pc-mingw32
>
> locale:
> [1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United
> States.1252    LC_MONETARY=English_United States.1252
> [4] LC_NUMERIC=C                           LC_TIME=English_United
> States.1252
>
> attached base packages:
> [1] stats     graphics  grDevices utils     datasets  methods   base
>
> other attached packages:
> [1] minqa_1.1.9     Rcpp_0.8.6      MiscPsycho_1.6  statmod_1.4.6
> lattice_0.17-26 gdata_2.8.0
>
> loaded via a namespace (and not attached):
> [1] grid_2.10.1  gtools_2.6.2 tools_2.10.1
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> and provide commented, minimal, self-contained, reproducible code.
>

--
_________________________
Lic. María Gabriela Cendoya
Magíster en Biometría