[R] Evaluation of survival analysis
He Zhang
hzshasha at googlemail.com
Tue Nov 30 16:16:14 CET 2010
Sorry that the first attachment didn't work, my fault.
Any suggestion or example about survival analysis, model evaluation or
R code for plot will be really appreciated.
>> Hello Mike,
>
> Thank you very much for your reply and help.
> May i describe the analysis more clearly?
> My data is ecology data and my task is to 1) relate the 8 candidate (life
> history) varaibles with the lifespan of each subject and 2) use the known
> variables to predict lifespan.
> For the 1st task, i used Cox regression "coxph()" to do uni-variate
> analysis first. However, most variables are correlated with each other. For
> involving more variables, principle component analysis is applied. After PAC
> "principal()", I chose three vairalbes according to the results (instead of
> the derived principle components since the interpretation of the original
> variables is easier) .
> For the 2nd task, i wanted to use the chosen variables to predict the
> lifespan. "predict(survreg())" is used to get the values.
> I attached parts of the results which are the residuals plot and predcited
> values vs. predictors derived from Cox regression and parametric
> survival model respectively.
>
> My problem: 1) not sure if the methods are correct for the tasks since the
> residuals plots are not totally randomly and the predicted hazard is less
> than 0. 2) i dont know how to explain/compare the fitness of the model.
> Any suggestion about the methods or results will be really appreciate. Thank you again.
> Best wishes,
> He
-------------- next part --------------
# The model with coxph()
fm1<-coxph(Surv(l,e)~pspline(x1)+pspline(x7)+pspline(x3)+strata(d$age1brut))
Call:
coxph(formula = Surv(l, e) ~ pspline(x1) + pspline(x7) + pspline(x3) +
strata(d$age1brut))
n=467 (49 observations deleted due to missingness)
coef se(coef) se2 Chisq DF p
pspline(x1), linear 0.04402 0.00978 0.00975 20.27 1.00 6.7e-06
pspline(x1), nonlin 11.65 3.04 9.0e-03
pspline(x7), linear -0.63959 0.22292 0.22190 8.23 1.00 4.1e-03
pspline(x7), nonlin 14.24 3.01 2.6e-03
pspline(x3), linear -0.00822 0.00915 0.00912 0.81 1.00 3.7e-01
pspline(x3), nonlin 13.30 3.00 4.0e-03
exp(coef) exp(-coef) lower .95 upper .95
ps(x1)2 0.6014 1.6628 2.04e-01 1.776
ps(x1)3 0.3770 2.6523 7.87e-02 1.806
ps(x1)4 0.3332 3.0010 6.66e-02 1.668
ps(x1)5 0.4675 2.1392 9.81e-02 2.228
ps(x1)6 0.6939 1.4412 1.45e-01 3.309
ps(x1)7 0.7743 1.2915 1.60e-01 3.741
ps(x1)8 0.6818 1.4667 1.40e-01 3.326
ps(x1)9 0.8127 1.2305 1.60e-01 4.117
ps(x1)10 1.4829 0.6744 2.75e-01 7.994
ps(x1)11 3.0899 0.3236 5.18e-01 18.422
ps(x1)12 6.3947 0.1564 7.80e-01 52.425
ps(x1)13 13.2295 0.0756 7.61e-01 229.872
ps(x7)2 0.6142 1.6281 1.16e-01 3.247
ps(x7)3 0.3832 2.6093 2.63e-02 5.586
ps(x7)4 0.2615 3.8235 1.09e-02 6.249
ps(x7)5 0.1696 5.8977 6.37e-03 4.513
ps(x7)6 0.0776 12.8888 3.12e-03 1.931
ps(x7)7 0.0359 27.8438 1.51e-03 0.857
ps(x7)8 0.0295 33.8888 1.24e-03 0.704
ps(x7)9 0.0288 34.7161 1.19e-03 0.695
ps(x7)10 0.0311 32.1617 1.27e-03 0.760
ps(x7)11 0.0392 25.5043 1.55e-03 0.993
ps(x7)12 0.0549 18.2032 1.74e-03 1.732
ps(x7)13 0.0796 12.5607 1.27e-03 4.981
ps(x3)2 0.5954 1.6797 1.24e-01 2.866
ps(x3)3 0.3501 2.8567 3.21e-02 3.823
ps(x3)4 0.2147 4.6578 1.51e-02 3.061
ps(x3)5 0.1328 7.5306 9.57e-03 1.842
ps(x3)6 0.1040 9.6167 7.80e-03 1.386
ps(x3)7 0.1316 7.5980 9.85e-03 1.758
ps(x3)8 0.2031 4.9247 1.49e-02 2.758
ps(x3)9 0.1676 5.9673 1.17e-02 2.399
ps(x3)10 0.0965 10.3617 5.59e-03 1.665
ps(x3)11 0.0472 21.1933 1.72e-03 1.296
ps(x3)12 0.0219 45.7020 3.21e-04 1.491
ps(x3)13 0.0101 98.7665 3.58e-05 2.865
Iterations: 5 outer, 19 Newton-Raphson
Theta= 0.834
Theta= 0.734
Theta= 0.715
Degrees of freedom for terms= 4 4 4
Rsquare= 0.148 (max possible= 0.985 )
Likelihood ratio test= 75 on 12.1 df, p=3.8e-11
Wald test = 78 on 12.1 df, p=1.07e-11
Iterations: 5 outer, 19 Newton-Raphson
Theta= 0.834
Theta= 0.734
Theta= 0.715
Degrees of freedom for terms= 4 4 4
Rsquare= 0.148 (max possible= 0.985 )
Likelihood ratio test= 75 on 12.1 df, p=3.8e-11
Wald test = 78 on 12.1 df, p=1.07e-11
# The model with survreg()
fm2<-survreg(Surv(l,e)~pspline(x1)+pspline(x7)+pspline(x3)+strata(d$age1brut))
survreg(formula = Surv(l, e) ~ pspline(x1) + pspline(x7) + pspline(x3) +
strata(d$age1brut))
coef se(coef) se2 Chisq DF p
(Intercept) 1.05340 0.66521 0.49670 2.51 1.00 1.1e-01
pspline(x1), linear -0.01567 0.00258 0.00258 36.84 1.00 1.3e-09
pspline(x1), nonlin 10.92 3.05 1.3e-02
pspline(x7), linear 0.23378 0.06078 0.06039 14.80 1.00 1.2e-04
pspline(x7), nonlin 9.41 3.02 2.5e-02
pspline(x3), linear 0.00196 0.00254 0.00252 0.60 1.00 4.4e-01
pspline(x3), nonlin 14.52 3.02 2.3e-03
Scale:
d$age1brut=2 d$age1brut=3 d$age1brut=4 d$age1brut=5
0.319 0.291 0.233 0.293
Iterations: 8 outer, 28 Newton-Raphson
Theta= 0.985
Theta= 0.973
Theta= 0.965
Degrees of freedom for terms= 0.6 4.1 4.0 4.0 3.9
Likelihood ratio test=89.1 on 11.5 df, p=4.36e-14
n=467 (49 observations deleted due to missingness)
-------------- next part --------------
A non-text attachment was scrubbed...
Name: graphs of residuals and predicts.pdf
Type: application/pdf
Size: 205877 bytes
Desc: not available
URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20101130/06c2f762/attachment.pdf>
More information about the R-help
mailing list