[R] randomForest can not handle categorical predictors with more than 32 categories

Mattia Prosperi ahnven at gmail.com
Wed Nov 10 21:51:47 CET 2010


try to transform the attributes that have more than 32 levels into
dummy binary variables.

2010/11/10 Mai Dang <mdmining at gmail.com>:
> I received this error
> Error in randomForest.default(m, y, ...) :
> Can not handle categorical predictors with more than 32 categories.
>
> using below code
>
> library(randomForest)
> library(MASS)
> memory.limit(size=12999)
> x <- read.csv("D:/train_store_title_view.csv", header=TRUE)
> x <- na.omit(x)
> set.seed(131)
> sales.rf <- randomForest(sales ~ ., data=x, mtry=3,
> importance=TRUE)
>
> My machine (i7) running on 64 bit R with 12 gigs of RAM.
>
> Would anyone know how to avoid this error ?
> Thank You for your reply,
>
> Mai Dang
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



More information about the R-help mailing list