[R] Problem with nested functions - functions nested too deeply in source code
Duncan Murdoch
murdoch.duncan at gmail.com
Fri May 7 13:19:17 CEST 2010
Maximilian Kofler wrote:
> Hi all!
>
> I¹m just implementing the Ullmann¹s algorithm for searching subgraph
> isomorphisms in graphNEL objects. The algorithm is running with smaller
> graphs, but when I¹m calling it i get an R error message saying that
> functions are nested too deeply in source code.
I doubt if that was the error message. More likely you saw
Error: evaluation nested too deeply: infinite recursion /
options(expressions=)?
(or perhaps a German translation of that). This isn't a case of the
source being nested to deeply, but rather of the evaluation being nested
too deeply. This happens in recursive algorithms when R runs out of
stack space, around 5000 calls deep. Is it likely in your dataset that
a recursion depth of 5000 is reasonable? In most cases this indicates a
programming error that leads to an infinite recursion, but there are
probably cases where a depth like that is reasonable.
Duncan Murdoch
> I found out that the problem
> is in the so called refinement procedure of the algorithm which consists of
> 10 different functions, returning an adjacency matrix. I¹m calling the
> refinement procedure with
>
> M <- refine1(M, A, B, p_A, p_B, FAIL) (note that all parameters in call
> refine1 have been defined previosly)
>
> Then the following steps look like this
>
> #####################################
> # Refinement process #
> #####################################
>
> refine1 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 1")
>
> # elim marks if there was eliminated a 1 (and changed to 0)
>
> lst <- vector(mode = "numeric")
> elim <- 0
> i <- 1
>
> refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> refine2 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 2")
>
> k <- 1
> h <- 1
>
> sc <- vector(mode = "numeric", length = p_A)
>
> for (l in 1:p_A){
>
> sc[l] <- 0
> }
>
> sc[1] <- 1
>
> refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> refine3 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 3")
>
> # check if there is a 1 in the current row in adjacency matrix of graph1
> which is on the same position of the 1 in sc
> # sc is a binary string whith only one 1. The position of the one goes
> from the first position of sc to the last position
> # and is used for scanning. First this is done for graph 1, and than for
> graph 2. Then it is checked if the following condition
> # is fulfilled: (for all x) ((A[i,x] = 1) => (there exists one ore more
> y) (M[x,y] * B[x,j] = 1)). The algorithm terminates if no more
> # 1 can be changed in a 0
>
> if (1 %in% collation(A[i,], sc) == FALSE){
>
> refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
>
>
> lst[k] <- h
> k <- k+1
>
> refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
> }
>
> refine4 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 4")
>
> sc <- c(0,sc[-p_A])
> h <- h+1
>
> if (k != (rowSums(A)[i])+1){
>
> refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
> refine5(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
> }
>
> refine5 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 5")
>
> j <- 1
>
> sc <- vector(mode = "numeric", length = p_B)
>
> for (l in 1:p_B){
>
> sc[l] <- 0
> }
>
> sc[1] <- 1
>
> refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> refine6 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 6")
>
> if (1 %in% collation(M[i,], sc) == FALSE){
>
> refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
> h <- 1
>
> refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
> }
>
> refine7 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 7")
>
> x <- lst[h]
>
> if (1 %in% collation(M[x,], B[,j]) == FALSE){
>
> refine8(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
> h <- h+1
>
> if (h != (rowSums(A)[i])+1){
>
> refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
> refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
> }
> }
>
> refine8 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 8")
>
> not_sc <- vector(mode = "numeric", length = p_B)
>
> for (n in 1:p_B){
>
> if (sc[n] == 1){
>
> not_sc[n] <- 0
> }
> else {
>
> not_sc[n] <- 1
>
> }
> }
>
> M[i,] <- collation(M[i,], not_sc)
>
> elim <- elim+1
> h <- h+1
>
> refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> refine9 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> #print("refine 9")
>
> sc <- c(0,sc[-p_B])
> j <- j+1
>
> if (j != p_B+1){
>
> refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
> refine10(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
> }
>
> refine10 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){
>
> print("refine 10")
>
> if (1 %in% M[i,] == FALSE){
>
> FAIL <- 1
> print(M)
> return(FAIL)
> }
>
> else {
>
> i <- i+1
>
> if (i != (p_A)+1){
>
> refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x)
> }
>
> else {
>
>
> if (elim != 0){
>
> refine1(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst,
> x)
> }
>
> else {
>
> return(M)
> }
> }
> }
> }
>
>
> I really don¹t now where the problem is. Hope that anybody can help me
> solving it.
>
>
>
> [[alternative HTML version deleted]]
>
>
> ------------------------------------------------------------------------
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
More information about the R-help
mailing list