[R] Adjustment for multiple-comparison for log-rank test
Marco Barbàra
jabbba at gmail.com
Sat Jul 17 13:46:02 CEST 2010
DeaR experts,
I was asked for a log-rank pairwise survival comparison. I've a straightforward way
to do this using the SAS system:
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#/documentation/cdl/en/statug/63033/HTML/default/statug_lifetest_sect019.htm
What I've found in R is shown below, but it's not a logrank test,
I suppose. (The documentation talks about "Tukey pairwise-comparisons").
Is it possible to carry out a "pairwise" logrank test?
Am I totally misguided?
Thank you very much for help.
################################### R code #################################################
> data(pbc)
> pbc$stage <- factor(pbc$stage)
> (fit <- coxph(Surv(time,status==2)~stage,data=pbc))
Call:
coxph(formula = Surv(time, status == 2) ~ stage, data = pbc)
coef exp(coef) se(coef) z p
stage2 1.10 3.01 0.737 1.50 0.13000
stage3 1.53 4.63 0.722 2.12 0.03400
stage4 2.53 12.57 0.717 3.53 0.00041
Likelihood ratio test=65.1 on 3 df, p=4.84e-14 n=412 (6 observations deleted due to missingness)
> summary(glht(fit,linfct=mcp(stage="Tukey"),alternative="g"))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: coxph(formula = Surv(time, status == 2) ~ stage, data = pbc)
Linear Hypotheses:
Estimate Std. Error z value Pr(>z)
2 - 1 <= 0 1.1027 0.7374 1.495 0.237
3 - 1 <= 0 1.5318 0.7224 2.120 0.068 .
4 - 1 <= 0 2.5311 0.7168 3.531 <0.001 ***
3 - 2 <= 0 0.4291 0.2544 1.686 0.169
4 - 2 <= 0 1.4284 0.2375 6.013 <0.001 ***
4 - 3 <= 0 0.9994 0.1816 5.502 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
More information about the R-help
mailing list