[R] Stata and R user GLM method
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Fri Jan 22 17:33:07 CET 2010
Jean-Baptiste,
You are not doing the same thing in R as in Stata. In stata you used the
probit link, in R the logit link.
HTH,
Thierry
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx op inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
-----Oorspronkelijk bericht-----
Van: r-help-bounces op r-project.org [mailto:r-help-bounces op r-project.org]
Namens Jean-Baptiste Combes
Verzonden: vrijdag 22 januari 2010 15:25
Aan: r-help op r-project.org
Onderwerp: [R] Stata and R user GLM method
Hello people,
I am in the process of migrating from Stata to R and I would like to
check if my results are similar under the two softwares:
Here is my GLM command under R
nurse.model<-glm(pQSfteHT~dQSvacrateHTQuali3_2 + dQSvacrateHTQuali3_3 +
dQSvacrateHTQuali3_4 + dQSvacrateHTQuali3_5 + cluster_32 + cluster_33 +
cluster_34 ,family=binomial(link = "logit"))
and below the stata command
glm pQSfteHT dQSvacrateHTQuali3_2 dQSvacrateHTQuali3_3
dQSvacrateHTQuali3_4
dQSvacrateHTQuali3_5 cluster_32 cluster_33 cluster_34, link(probit)
family(binomial) robust
Apart from the robust option, it seems to me from what I understand that
I should get the same things.
Stata output:
*Second model (N=690*
*Coef.*
*p-value*
Constant**
0.241***
0.000
QV>SV>0
0.076***
0.001
SV>QV>0
0.071**
0.027
QV>SV=0
0.051**
0.019
SV>QV=0
0.042
0.368
Mental Health HTs
-0.226***
0.000
Acute Teaching HTs
0.159***
0.000
Other HTs
0.084
0.200
R output (Sorry for the presentation, but I am not able at the moment to
produce nice tables, the variables are in the same order as above)
Call:
glm(formula = pQSfteHT ~ dQSvacrateHTQuali3_2 + dQSvacrateHTQuali3_3 +
dQSvacrateHTQuali3_4 + dQSvacrateHTQuali3_5 + cluster_32 +
cluster_33 + cluster_34, family = binomial(link = "logit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.297e+00 2.107e-08 2.107e-08 6.275e-06 3.850e-01
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.476e+01 1.950e+04 0.002 0.998
dQSvacrateHTQuali3_2 -1.112e+00 2.136e+04 -5.21e-05 1.000
dQSvacrateHTQuali3_3 -5.365e-01 2.576e+04 -2.08e-05 1.000
dQSvacrateHTQuali3_4 -2.011e+01 1.693e+04 -0.001 0.999
dQSvacrateHTQuali3_5 -6.509e-01 4.040e+04 -1.61e-05 1.000
cluster_32 -3.194e-01 1.788e+04 -1.79e-05 1.000
cluster_33 -2.857e-02 2.475e+04 -1.15e-06 1.000
cluster_34 -2.209e+01 9.666e+03 -0.002 0.998
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 15.0690 on 688 degrees of freedom Residual
deviance: 7.2049 on 681 degrees of freedom
AIC: 23.205
Number of Fisher Scoring iterations: 24
My suggestion is that I have something wrong with my data under R (I am
confident with the Stata results). What do you think? I am not expecting
you to solve my problem as I reckon it is a bit difficult for you as you
do not know the data, I just would like an opinion on the differences
found between the two softwares, do you agree that there is something
wrong?
Thank you for reading this e-mail.
I would like to thank you in advance and alos the people who answered my
previous e-mail that was very kind of you.
Jean-Baptiste
[[alternative HTML version deleted]]
______________________________________________
R-help op r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
Druk dit bericht a.u.b. niet onnodig af.
Please do not print this message unnecessarily.
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer
en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is
door een geldig ondertekend document. The views expressed in this message
and any annex are purely those of the writer and may not be regarded as stating
an official position of INBO, as long as the message is not confirmed by a duly
signed document.
More information about the R-help
mailing list