[R] Memory usage in read.csv()
jim holtman
jholtman at gmail.com
Tue Jan 19 20:02:08 CET 2010
I read vmstat data in just fine without any problems. Here is an
example of how I do it:
VMstat <- read.table('vmstat.txt', header=TRUE, as.is=TRUE)
vmstat.txt looks like this:
date time r b w swap free re mf pi po fr de sr intr syscalls cs user sys id
07/27/05 00:13:06 0 0 0 27755440 13051648 20 86 0 0 0 0 0 456 2918 1323 0 1 99
07/27/05 00:13:36 0 0 0 27755280 13051480 11 53 0 0 0 0 0 399 1722 1411 0 1 99
07/27/05 00:14:06 0 0 0 27753952 13051248 18 88 0 0 0 0 0 424 1259 1254 0 1 99
07/27/05 00:14:36 0 0 0 27755304 13051496 17 85 0 0 0 0 0 430 1029 1246 0 1 99
07/27/05 00:15:06 0 0 0 27755064 13051232 41 278 0 1 1 0 0 452 2047 1386 0 1 99
07/27/05 00:15:36 0 0 0 27753824 13040720 125 1039 0 0 0 0 0 664 4097
1901 3 2 95
07/27/05 00:16:06 0 0 0 27754472 13027000 15 91 0 0 0 0 0 432 1160 1273 0 1 99
07/27/05 00:16:36 0 0 0 27754568 13027104 17 85 0 0 0 0 0 416 1058 1271 0 1 99
Have you tried a smaller portion of data?
Here is what it took to read in a file with 85K lines:
> system.time(vmstat <- read.table('c:/vmstat.txt', header=TRUE))
user system elapsed
2.01 0.01 2.03
> str(vmstat)
'data.frame': 85680 obs. of 20 variables:
$ date : Factor w/ 2 levels "07/27/05","07/28/05": 1 1 1 1 1 1 1 1 1 1 ...
$ time : Factor w/ 2856 levels "00:00:26","00:00:56",..: 27 29 31
33 35 37 39 41 43 45 ...
$ r : int 0 0 0 0 0 0 0 0 0 0 ...
$ b : int 0 0 0 0 0 0 0 0 0 0 ...
$ w : int 0 0 0 0 0 0 0 0 0 0 ...
$ swap : int 27755440 27755280 27753952 27755304 27755064
27753824 27754472 27754568 27754560 27754704 ...
$ free : int 13051648 13051480 13051248 13051496 13051232
13040720 13027000 13027104 13027096 13027240 ...
$ re : int 20 11 18 17 41 125 15 17 13 12 ...
$ mf : int 86 53 88 85 278 1039 91 85 69 51 ...
$ pi : int 0 0 0 0 0 0 0 0 0 0 ...
$ po : int 0 0 0 0 1 0 0 0 0 1 ...
$ fr : int 0 0 0 0 1 0 0 0 0 1 ...
$ de : int 0 0 0 0 0 0 0 0 0 0 ...
$ sr : int 0 0 0 0 0 0 0 0 0 0 ...
$ intr : int 456 399 424 430 452 664 432 416 425 432 ...
$ syscalls: int 2918 1722 1259 1029 2047 4097 1160 1058 1198 1727 ...
$ cs : int 1323 1411 1254 1246 1386 1901 1273 1271 1268 1477 ...
$ user : int 0 0 0 0 0 3 0 0 0 0 ...
$ sys : int 1 1 1 1 1 2 1 1 1 1 ...
$ id : int 99 99 99 99 99 95 99 99 99 99 ...
>
On Tue, Jan 19, 2010 at 9:25 AM, <nabble.30.miller_2555 at spamgourmet.com> wrote:
>
> I'm sure this has gotten some attention before, but I have two CSV
> files generated from vmstat and free that are roughly 6-8 Mb (about
> 80,000 lines) each. When I try to use read.csv(), R allocates all
> available memory (about 4.9 Gb) when loading the files, which is over
> 300 times the size of the raw data. Here are the scripts used to
> generate the CSV files as well as the R code:
>
> Scripts (run for roughly a 24-hour period):
> vmstat -ant 1 | awk '$0 !~ /(proc|free)/ {FS=" "; OFS=","; print
> strftime("%F %T %Z"),$6,$7,$12,$13,$14,$15,$16,$17;}' >>
> ~/vmstat_20100118_133845.o;
> free -ms 1 | awk '$0 ~ /Mem\:/ {FS=" "; OFS=","; print
> strftime("%F %T %Z"),$2,$3,$4,$5,$6,$7}' >>
> ~/memfree_20100118_140845.o;
>
> R code:
> infile.vms <- "~/vmstat_20100118_133845.o";
> infile.mem <- "~/memfree_20100118_140845.o";
> vms.colnames <-
> c("time","r","b","swpd","free","inact","active","si","so","bi","bo","in","cs","us","sy","id","wa","st");
> vms.colclass <- c("character",rep("integer",length(vms.colnames)-1));
> mem.colnames <- c("time","total","used","free","shared","buffers","cached");
> mem.colclass <- c("character",rep("integer",length(mem.colnames)-1));
> vmsdf <- (read.csv(infile.vms,header=FALSE,colClasses=vms.colclass,col.names=vms.colnames));
> memdf <- (read.csv(infile.mem,header=FALSE,colClasses=mem.colclass,col.names=mem.colnames));
>
> I am running R v2.10.0 on a 64-bit machine with Fedora 10 (Linux
> version 2.6.27.41-170.2.117.fc10.x86_64 ) with 6Gb of memory. There
> are no other significant programs running and `rm()` followed by `
> gc()` successfully frees the memory (followed by swapins after other
> programs seek to used previously cached information swapped to disk).
> I've incorporated the memory-saving suggestions in the `read.csv()`
> manual page, excluding the limit on the lines read (which shouldn't
> really be necessary here since we're only talking about < 20 Mb of raw
> data. Any suggestions, or is the read.csv() code known to have memory
> leak/ overcommit issues?
>
> Thanks
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
--
Jim Holtman
Cincinnati, OH
+1 513 646 9390
What is the problem that you are trying to solve?
More information about the R-help
mailing list