[R] False convergence of a glmer model
Shige Song
shigesong at gmail.com
Tue Feb 16 16:05:41 CET 2010
Dear All,
I am trying to fit a 2-level random intercept logistic regression on a
data set of 20,000 cases. The model is specified as the following:
m1 <- glmer(inftmort ~ as.factor(cohort) + (1|code), family=binomial, data=d)
I got "Warning message: In mer_finalize(ans) : false convergence (8)"
With the "verbose=TRUE" option, I was able to get the following
iteration history:
0: 3456.4146: 1.15161 -3.99068 -0.498790 -0.122116
1: 3361.3370: 1.04044 -4.38172 -0.561756 -0.289991
2: 3303.7986: 1.48296 -4.40741 -0.566208 -0.259730
3: 3147.5537: 1.93037 -5.14388 -0.682530 -0.443006
4: 3123.6900: 2.10192 -5.18784 -0.685558 -0.428320
5: 2988.6287: 2.94890 -6.31023 -0.825286 -0.586282
6: 2958.3364: 3.25396 -6.88256 -0.316988 0.572428
7: 2853.7703: 4.22731 -7.44955 -0.279492 -0.294353
8: 2844.8476: 4.36583 -7.43902 -0.293111 -0.267308
9: 2843.2879: 4.39182 -7.44895 -0.298791 -0.265899
10: 2840.2676: 4.44288 -7.47103 -0.310477 -0.263945
11: 2839.0890: 4.46259 -7.48131 -0.315320 -0.263753
12: 2838.8550: 4.46649 -7.48344 -0.316292 -0.263745
13: 2838.3889: 4.47428 -7.48771 -0.318236 -0.263737
14: 2838.3703: 4.47459 -7.48788 -0.318314 -0.263738
15: 2838.2216: 4.47708 -7.48927 -0.318936 -0.263742
16: 2838.2157: 4.47718 -7.48932 -0.318961 -0.263742
17: 2838.2145: 4.47720 -7.48934 -0.318966 -0.263742
18: 2838.2121: 4.47724 -7.48936 -0.318976 -0.263742
19: 2838.2120: 4.47724 -7.48936 -0.318976 -0.263742
20: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
21: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
22: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
23: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
24: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
25: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
26: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
27: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
28: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
29: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
30: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
31: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
32: 2838.2118: 4.47724 -7.48936 -0.318977 -0.263742
33: 2837.8154: 4.46385 -7.47464 -0.495684 -0.263985
34: 2837.7613: 4.46641 -7.47053 -0.498335 -0.264014
35: 2837.6418: 4.47259 -7.46200 -0.501644 -0.264141
36: 2837.5982: 4.47485 -7.45928 -0.502598 -0.264214
37: 2837.5850: 4.47537 -7.45882 -0.502848 -0.264237
38: 2837.5307: 4.47674 -7.45848 -0.503216 -0.264313
39: 2837.5014: 4.47725 -7.45875 -0.503273 -0.264344
40: 2837.4955: 4.47735 -7.45881 -0.503284 -0.264350
41: 2837.4944: 4.47738 -7.45882 -0.503286 -0.264351
42: 2837.4941: 4.47738 -7.45882 -0.503287 -0.264351
43: 2837.4936: 4.47739 -7.45883 -0.503288 -0.264352
44: 2837.4935: 4.47739 -7.45883 -0.503288 -0.264352
45: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
46: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
47: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
48: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
49: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
50: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
51: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
52: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
53: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
54: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
55: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
56: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
57: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
58: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
59: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
60: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
61: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
62: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
63: 2837.4931: 4.47740 -7.45883 -0.503289 -0.264352
By the way, the same model can be fitted using Stata using xtlogit and
xtmelogit; a simpler model without the random component can be
estimated using R as:
m <- glm(inftmort ~ as.factor(cohort), family=binomial, data=d)
I was also able to get highly consistent results via MCMC simulation
using MCMCglmm.
It will be greatly appreciated if someone can give me some hints where
to look further. Thanks.
Best,
Shige
BTW, sorry about the earlier post, which was caused by a mistake.
More information about the R-help
mailing list