[R] understanding the 4 parameter logisitc regression
1Rnwb
sbpurohit at gmail.com
Thu Dec 16 21:29:11 CET 2010
I have questions regarding
test=data.frame(cbind(conc=c(25000, 12500, 6250, 3125, 1513, 781, 391,
195, 97.7, 48.4, 24, 12, 6, 3, 1.5, 0.001),
il10=c(330269, 216875, 104613, 51372, 26842, 13256, 7255, 3049, 1849, 743,
480, 255, 241, 128, 103, 50)))
nls(log(il10)~A+(B-A)/(1+(conc/xmid )^scal),data=test,
+ start = list(A=3.5, B=15,
+ xmid=600,scal=1/2.5))
Nonlinear regression model
model: log(il10) ~ A + (B - A)/(1 + (conc/xmid)^scal)
data: test
A B xmid scal
14.7051665 3.7964534 607.9822962 0.3987786
residual sum-of-squares: 0.1667462
I did not understand how these values A=3.5, B=15,xmid=600,scal=1/2.5 were
obtained by Jim in the posting here
http://www.mail-archive.com/r-help@stat.math.ethz.ch/msg25500.html.
I would appreciate a little help here to understand the 4-parameter
logisitic regression for processing of standard curve for ELISA/MUltiplex
Immunoassays.
Thanks and happy holidays
sharad
--
View this message in context: http://r.789695.n4.nabble.com/understanding-the-4-parameter-logisitc-regression-tp3091588p3091588.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list