[R] error in  lrm(  )
    笑啸 
    dingdonglion at 126.com
       
    Thu Dec  9 14:06:05 CET 2010
    
    
  
Dear Sir or Madam:
 
I am a doctor of urology,and I am engaged in developing a nomogram of bladder cancer. May I ask for your help on below issue?
 
I set up a dataset which include 317 cases. I got the Binary Logistic Regression model by SPSS.And then I try to reconstruct the model
(lrm(RECU~Complication+T.Num+T.Grade+Year+TS)) by R-Project,and try to internal validate the model through using the function “validate( )”,and get the ROC through the function “plot.roc( )”.The outcomes like this: At last I want to get the Logistic model ,and get the prediction accuracy .Now the “Area under the curve”(0.6931) is not too bad,but the “Dxy”(I think it as the prediction accuracy probability) is too low.And I don’t know which reason lead to the outcomes.Maybe I have a mistake understanding on the function “lrm( )”,and apply it wrong.
 
 Could you please give me some idea on how to resulve this problem? Thanks in advance for your kind support.
 
warmly regards,
 
 Ding                                                                                                                                                                                                                                                                                                          
---------------------------------------outcomes----------------------------------------------------------------------------
Logistic Regression Model
lrm(formula = RECU ~ Complications + T.Num + T.Grade + Year + TS, x = TRUE, y = TRUE)
 
               Model Likelihood                    Discrimination                     Rank Discrim.   
                 Ratio Test                                    Indexes                                    Indexes      
 
Obs    317   LR chi2     37.78                 R2   0.154                         C      0.693   
 0     201   d.f.         5                               g    0.876                           Dxy    0.386   
 1     116   Pr(> chi2)   <0.0001              gr    2.400                           gamma  0.408   
max |deriv| 2e-09                                   gp   0.183                           tau-a  0.180   
                                                                      Brier 0.207                    
 
 
                                           Coef              S.E.             Wald Z            Pr(>|Z|)
Intercept                           -2.3566         0.3819       -6.17                <0.0001
Complications                 1.6807         0.6005        2.80                0.0051 
T.Num                                0.6481         0.2503         2.59               0.0096 
T.Grade                            0.4276           0.1820        2.35                 0.0188 
Year                                   0.5759            0.2849       2.02               0.0432 
TS                                        0.6313          0.2750      2.30                    0.0217 
 
> validate(f,B=200)
         index.orig   training   test     optimism index.corrected   n
Dxy       0.3861     0.4081    0.3699  0.0382     0.3479        200
R2        0.1537     0.1716    0.1378  0.0339     0.1198        200
Intercept  0.0000      0.0000    -0.0585 0.0585     -0.0585        200
Slope     1.0000      1.0000    0.8835  0.1165     0.8835        200
Emax     0.0000      0.0000    0.0375  0.0375     0.0375        200
D        0.1160      0.1315    0.1030  0.0285     0.0875        200
U        -0.0063     -0.0063    0.0021  -0.0084    0.0021        200
Q        0.1223      0.1378    0.1010  0.0369     0.0855        200
B        0.2073      0.2035    0.2114  -0.0079     0.2153        200
g        0.8755      0.9415    0.8170   0.1244     0.7511        200
gp       0.1833      0.1920    0.1728   0.0192     0.1641        200
 
 
> plot.roc(RECU,l)
 
Call:
plot.roc.default(x = RECU, predictor = l)
 
Data: l in 201 controls (response 0) < 116 cases (response 1).
Area under the curve: 0.6931
    
    
More information about the R-help
mailing list