[R] book about "support vector machines"

David Reinke dreinke at dowlinginc.com
Mon Dec 6 18:39:51 CET 2010

My favorite book on SVM is Learning with Kernels by Scholkopf and Smola. You might also want to consider a relevance vector machine, which is a more recent development. RVM is Bayesian-based and usually produces a sparser representation than a SVM. Check out Mike Tipping's web site at

There is also a good description of RVM in Bishop's book: Pattern Recognition and Machine Learning.

David Reinke

Senior Transportation Engineer/Economist
Dowling Associates, Inc.
180 Grand Avenue, Suite 250
Oakland, California 94612-3774
510.839.1742 x104 (voice)
510.839.0871 (fax)

 Please consider the environment before printing this e-mail.

Confidentiality Notice:  This e-mail message, including any attachments, is for the sole use of the intended recipient(s), and may contain confidential  and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.

-----Original Message-----
From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] On Behalf Of km
Sent: Friday, December 03, 2010 10:16 PM
To: Georg Ruß
Cc: r-help at r-project.org; manuel.martin
Subject: Re: [R] book about "support vector machines"

a bit of caution.
the latest version of libsvm is not yet available in the  e1071 R-package.


On Fri, Dec 3, 2010 at 9:52 PM, Georg Ru_ <research at georgruss.de> wrote:

> On 03/12/10 16:23:33, manuel.martin wrote:
> > I am currently looking for a book about support vector machines for 
> > regression and classification and am a bit lost since they are 
> > plenty of books dealing with this subject. I am not totally new to 
> > the field and would like to get more information on that subject for 
> > later use with the e1071 
> > <http://cran.r-project.org/web/packages/e1071/index.html>
> > package for instance.
> Hi Manuel,
> there's also the references mentioned in ?svm once you've loaded the 
> e1071 library. Nevertheless, that's rather detailed on the 
> implementation side, not on the general picture that I assume you'd like for a book.
> library("e1071")
> ?svm
> There's also the downloadable "A guide for beginners: C.-W. Hsu, C.-C.
> Chang, C.-J.  Lin. A practical guide to support vector classification"
> mentioned in the "additional information" section of 
> http://www.csie.ntu.edu.tw/~cjlin/libsvm/<http://www.csie.ntu.edu.tw/%
> 7Ecjlin/libsvm/>(which, in turn, is from ?svm)
> Regards,
> Georg.
> --
> Research Assistant
> Otto-von-Guericke-Universitdt Magdeburg research at georgruss.de 
> http://research.georgruss.de
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

	[[alternative HTML version deleted]]

More information about the R-help mailing list