[R] extracting p-values from Anova objects (from the car library)

Johan Steen johan.steen at gmail.com
Mon Aug 23 23:35:56 CEST 2010


Thanks for your replies,

but unfortunately none of them seem to help.
I do get p-values in the output, but can't seem to locate them anywhere 
in these objects via the str() function. I also get very different 
output using str() than you obtained from the lm help page

Here's my output:

 > A <- factor( rep(1:2,each=3) )
 > B <- factor( rep(1:3,times=2) )
 > idata <- data.frame(A,B)
 > idata
   A B
1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
 >
 > fit <- lm( cbind(a1_b1,a1_b2,a1_b3,a2_b1,a2_b2,a2_b3) ~ sex, 
data=Data.wide)
 > result <- Anova(fit, type="III", test="Wilks", idata=idata, idesign=~A*B)
 > result

Type III Repeated Measures MANOVA Tests: Wilks test statistic
             Df test stat approx F num Df den Df    Pr(>F)
(Intercept)  1   0.02863   610.81      1     18 2.425e-15
sex          1   0.76040     5.67      1     18   0.02849
A            1   0.91390     1.70      1     18   0.20925
sex:A        1   0.99998     0.00      1     18   0.98536
B            1   0.26946    23.05      2     17 1.443e-05
sex:B        1   0.98394     0.14      2     17   0.87140
A:B          1   0.27478    22.43      2     17 1.704e-05
sex:A:B      1   0.98428     0.14      2     17   0.87397
 > summary(result)

Type III Repeated Measures MANOVA Tests:

------------------------------------------

Term: (Intercept)

  Response transformation matrix:
       (Intercept)
a1_b1           1
a1_b2           1
a1_b3           1
a2_b1           1
a2_b2           1
a2_b3           1

Sum of squares and products for the hypothesis:
             (Intercept)
(Intercept)     1169345

Sum of squares and products for error:
             (Intercept)
(Intercept)     34459.4

Multivariate Tests: (Intercept)
                  Df test stat approx F num Df den Df    Pr(>F)
Pillai            1   0.97137 610.8117      1     18 2.425e-15
Wilks             1   0.02863 610.8117      1     18 2.425e-15
Hotelling-Lawley  1  33.93399 610.8117      1     18 2.425e-15
Roy               1  33.93399 610.8117      1     18 2.425e-15

------------------------------------------

Term: sex

  Response transformation matrix:
       (Intercept)
a1_b1           1
a1_b2           1
a1_b3           1
a2_b1           1
a2_b2           1
a2_b3           1

Sum of squares and products for the hypothesis:
             (Intercept)
(Intercept)     10857.8

Sum of squares and products for error:
             (Intercept)
(Intercept)     34459.4

Multivariate Tests: sex
                  Df test stat approx F num Df den Df   Pr(>F)
Pillai            1 0.2395956 5.671614      1     18 0.028486
Wilks             1 0.7604044 5.671614      1     18 0.028486
Hotelling-Lawley  1 0.3150896 5.671614      1     18 0.028486
Roy               1 0.3150896 5.671614      1     18 0.028486

------------------------------------------

Term: A

  Response transformation matrix:
       A1
a1_b1  1
a1_b2  1
a1_b3  1
a2_b1 -1
a2_b2 -1
a2_b3 -1

Sum of squares and products for the hypothesis:
     A1
A1 980

Sum of squares and products for error:
         A1
A1 10401.8

Multivariate Tests: A
                  Df test stat approx F num Df den Df  Pr(>F)
Pillai            1 0.0861024 1.695860      1     18 0.20925
Wilks             1 0.9138976 1.695860      1     18 0.20925
Hotelling-Lawley  1 0.0942145 1.695860      1     18 0.20925
Roy               1 0.0942145 1.695860      1     18 0.20925

------------------------------------------

Term: sex:A

  Response transformation matrix:
       A1
a1_b1  1
a1_b2  1
a1_b3  1
a2_b1 -1
a2_b2 -1
a2_b3 -1

Sum of squares and products for the hypothesis:
     A1
A1 0.2

Sum of squares and products for error:
         A1
A1 10401.8

Multivariate Tests: sex:A
                  Df test stat     approx F num Df den Df  Pr(>F)
Pillai            1 0.0000192 0.0003460939      1     18 0.98536
Wilks             1 0.9999808 0.0003460939      1     18 0.98536
Hotelling-Lawley  1 0.0000192 0.0003460939      1     18 0.98536
Roy               1 0.0000192 0.0003460939      1     18 0.98536

------------------------------------------

Term: B

  Response transformation matrix:
       B1 B2
a1_b1  1  0
a1_b2  0  1
a1_b3 -1 -1
a2_b1  1  0
a2_b2  0  1
a2_b3 -1 -1

Sum of squares and products for the hypothesis:
         B1     B2
B1 3618.05 3443.2
B2 3443.20 3276.8

Sum of squares and products for error:
        B1     B2
B1 2304.5 1396.8
B2 1396.8 1225.2

Multivariate Tests: B
                  Df test stat approx F num Df den Df     Pr(>F)
Pillai            1  0.730544 23.04504      2     17 1.4426e-05
Wilks             1  0.269456 23.04504      2     17 1.4426e-05
Hotelling-Lawley  1  2.711181 23.04504      2     17 1.4426e-05
Roy               1  2.711181 23.04504      2     17 1.4426e-05

------------------------------------------

Term: sex:B

  Response transformation matrix:
       B1 B2
a1_b1  1  0
a1_b2  0  1
a1_b3 -1 -1
a2_b1  1  0
a2_b2  0  1
a2_b3 -1 -1

Sum of squares and products for the hypothesis:
       B1 B2
B1 26.45 23
B2 23.00 20

Sum of squares and products for error:
        B1     B2
B1 2304.5 1396.8
B2 1396.8 1225.2

Multivariate Tests: sex:B
                  Df test stat  approx F num Df den Df Pr(>F)
Pillai            1 0.0160644 0.1387764      2     17 0.8714
Wilks             1 0.9839356 0.1387764      2     17 0.8714
Hotelling-Lawley  1 0.0163266 0.1387764      2     17 0.8714
Roy               1 0.0163266 0.1387764      2     17 0.8714

------------------------------------------

Term: A:B

  Response transformation matrix:
       A1:B1 A1:B2
a1_b1     1     0
a1_b2     0     1
a1_b3    -1    -1
a2_b1    -1     0
a2_b2     0    -1
a2_b3     1     1

Sum of squares and products for the hypothesis:
         A1:B1 A1:B2
A1:B1 5152.05 738.3
A1:B2  738.30 105.8

Sum of squares and products for error:
        A1:B1  A1:B2
A1:B1 3210.5 1334.4
A1:B2 1334.4  924.0

Multivariate Tests: A:B
                  Df test stat approx F num Df den Df     Pr(>F)
Pillai            1 0.7252156 22.43334      2     17 1.7039e-05
Wilks             1 0.2747844 22.43334      2     17 1.7039e-05
Hotelling-Lawley  1 2.6392162 22.43334      2     17 1.7039e-05
Roy               1 2.6392162 22.43334      2     17 1.7039e-05

------------------------------------------

Term: sex:A:B

  Response transformation matrix:
       A1:B1 A1:B2
a1_b1     1     0
a1_b2     0     1
a1_b3    -1    -1
a2_b1    -1     0
a2_b2     0    -1
a2_b3     1     1

Sum of squares and products for the hypothesis:
       A1:B1 A1:B2
A1:B1 26.45   2.3
A1:B2  2.30   0.2

Sum of squares and products for error:
        A1:B1  A1:B2
A1:B1 3210.5 1334.4
A1:B2 1334.4  924.0

Multivariate Tests: sex:A:B
                  Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0157232 0.1357821      2     17 0.87397
Wilks             1 0.9842768 0.1357821      2     17 0.87397
Hotelling-Lawley  1 0.0159744 0.1357821      2     17 0.87397
Roy               1 0.0159744 0.1357821      2     17 0.87397

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

                 SS num Df Error SS den Df        F    Pr(>F)
(Intercept) 194891      1   5743.2     18 610.8117 2.425e-15
sex           1810      1   5743.2     18   5.6716   0.02849
A              163      1   1733.6     18   1.6959   0.20925
sex:A            0      1   1733.6     18   0.0003   0.98536
B             1151      2    711.0     36  29.1292 2.990e-08
sex:B            8      2    711.0     36   0.1979   0.82134
A:B           1507      2    933.4     36  29.0532 3.078e-08
sex:A:B          8      2    933.4     36   0.1565   0.85568


Mauchly Tests for Sphericity

         Test statistic   p-value
B              0.57532 0.0091036
sex:B          0.57532 0.0091036
A:B            0.45375 0.0012104
sex:A:B        0.45375 0.0012104


Greenhouse-Geisser and Huynh-Feldt Corrections
  for Departure from Sphericity

          GG eps Pr(>F[GG])
B       0.70191  2.143e-06
sex:B   0.70191     0.7427
A:B     0.64672  4.838e-06
sex:A:B 0.64672     0.7599

          HF eps Pr(>F[HF])
B       0.74332  1.181e-06
sex:B   0.74332     0.7560
A:B     0.67565  3.191e-06
sex:A:B 0.67565     0.7702
 > str(result)
List of 13
  $ SSP       :List of 8
   ..$ (Intercept): num [1, 1] 1169345
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1, 1] 10858
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1, 1] 980
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1, 1] 0.2
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:2, 1:2] 3618 3443 3443 3277
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:2, 1:2] 26.4 23 23 20
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:2, 1:2] 5152 738 738 106
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:2, 1:2] 26.4 2.3 2.3 0.2
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ SSPE      :List of 8
   ..$ (Intercept): num [1, 1] 34459
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1, 1] 34459
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1, 1] 10402
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1, 1] 10402
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:2, 1:2] 2304 1397 1397 1225
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:2, 1:2] 2304 1397 1397 1225
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:2, 1:2] 3210 1334 1334 924
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:2, 1:2] 3210 1334 1334 924
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ P         :List of 8
   ..$ (Intercept): num [1:6, 1] 1 1 1 1 1 1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1:6, 1] 1 1 1 1 1 1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1:6, 1] 1 1 1 -1 -1 -1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1:6, 1] 1 1 1 -1 -1 -1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ df        : Named num [1:8] 1 1 1 1 1 1 1 1
   ..- attr(*, "names")= chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
  $ error.df  : int 18
  $ terms     : chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
  $ repeated  : logi TRUE
  $ type      : chr "III"
  $ test      : chr "Wilks"
  $ idata     :'data.frame':     6 obs. of  2 variables:
   ..$ A: Factor w/ 2 levels "1","2": 1 1 1 2 2 2
   .. ..- attr(*, "contrasts")= chr "contr.sum"
   ..$ B: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3
   .. ..- attr(*, "contrasts")= chr "contr.sum"
  $ idesign   :Class 'formula' length 2 ~A * B
   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
  $ icontrasts: chr [1:2] "contr.sum" "contr.poly"
  $ imatrix   : NULL
  - attr(*, "class")= chr "Anova.mlm"
 > str(summary(result))

Type III Repeated Measures MANOVA Tests:

------------------------------------------

Term: (Intercept)

  Response transformation matrix:
       (Intercept)
a1_b1           1
a1_b2           1
a1_b3           1
a2_b1           1
a2_b2           1
a2_b3           1

Sum of squares and products for the hypothesis:
             (Intercept)
(Intercept)     1169345

Sum of squares and products for error:
             (Intercept)
(Intercept)     34459.4

Multivariate Tests: (Intercept)
                  Df test stat approx F num Df den Df    Pr(>F)
Pillai            1   0.97137 610.8117      1     18 2.425e-15
Wilks             1   0.02863 610.8117      1     18 2.425e-15
Hotelling-Lawley  1  33.93399 610.8117      1     18 2.425e-15
Roy               1  33.93399 610.8117      1     18 2.425e-15

------------------------------------------

Term: sex

  Response transformation matrix:
       (Intercept)
a1_b1           1
a1_b2           1
a1_b3           1
a2_b1           1
a2_b2           1
a2_b3           1

Sum of squares and products for the hypothesis:
             (Intercept)
(Intercept)     10857.8

Sum of squares and products for error:
             (Intercept)
(Intercept)     34459.4

Multivariate Tests: sex
                  Df test stat approx F num Df den Df   Pr(>F)
Pillai            1 0.2395956 5.671614      1     18 0.028486
Wilks             1 0.7604044 5.671614      1     18 0.028486
Hotelling-Lawley  1 0.3150896 5.671614      1     18 0.028486
Roy               1 0.3150896 5.671614      1     18 0.028486

------------------------------------------

Term: A

  Response transformation matrix:
       A1
a1_b1  1
a1_b2  1
a1_b3  1
a2_b1 -1
a2_b2 -1
a2_b3 -1

Sum of squares and products for the hypothesis:
     A1
A1 980

Sum of squares and products for error:
         A1
A1 10401.8

Multivariate Tests: A
                  Df test stat approx F num Df den Df  Pr(>F)
Pillai            1 0.0861024 1.695860      1     18 0.20925
Wilks             1 0.9138976 1.695860      1     18 0.20925
Hotelling-Lawley  1 0.0942145 1.695860      1     18 0.20925
Roy               1 0.0942145 1.695860      1     18 0.20925

------------------------------------------

Term: sex:A

  Response transformation matrix:
       A1
a1_b1  1
a1_b2  1
a1_b3  1
a2_b1 -1
a2_b2 -1
a2_b3 -1

Sum of squares and products for the hypothesis:
     A1
A1 0.2

Sum of squares and products for error:
         A1
A1 10401.8

Multivariate Tests: sex:A
                  Df test stat     approx F num Df den Df  Pr(>F)
Pillai            1 0.0000192 0.0003460939      1     18 0.98536
Wilks             1 0.9999808 0.0003460939      1     18 0.98536
Hotelling-Lawley  1 0.0000192 0.0003460939      1     18 0.98536
Roy               1 0.0000192 0.0003460939      1     18 0.98536

------------------------------------------

Term: B

  Response transformation matrix:
       B1 B2
a1_b1  1  0
a1_b2  0  1
a1_b3 -1 -1
a2_b1  1  0
a2_b2  0  1
a2_b3 -1 -1

Sum of squares and products for the hypothesis:
         B1     B2
B1 3618.05 3443.2
B2 3443.20 3276.8

Sum of squares and products for error:
        B1     B2
B1 2304.5 1396.8
B2 1396.8 1225.2

Multivariate Tests: B
                  Df test stat approx F num Df den Df     Pr(>F)
Pillai            1  0.730544 23.04504      2     17 1.4426e-05
Wilks             1  0.269456 23.04504      2     17 1.4426e-05
Hotelling-Lawley  1  2.711181 23.04504      2     17 1.4426e-05
Roy               1  2.711181 23.04504      2     17 1.4426e-05

------------------------------------------

Term: sex:B

  Response transformation matrix:
       B1 B2
a1_b1  1  0
a1_b2  0  1
a1_b3 -1 -1
a2_b1  1  0
a2_b2  0  1
a2_b3 -1 -1

Sum of squares and products for the hypothesis:
       B1 B2
B1 26.45 23
B2 23.00 20

Sum of squares and products for error:
        B1     B2
B1 2304.5 1396.8
B2 1396.8 1225.2

Multivariate Tests: sex:B
                  Df test stat  approx F num Df den Df Pr(>F)
Pillai            1 0.0160644 0.1387764      2     17 0.8714
Wilks             1 0.9839356 0.1387764      2     17 0.8714
Hotelling-Lawley  1 0.0163266 0.1387764      2     17 0.8714
Roy               1 0.0163266 0.1387764      2     17 0.8714

------------------------------------------

Term: A:B

  Response transformation matrix:
       A1:B1 A1:B2
a1_b1     1     0
a1_b2     0     1
a1_b3    -1    -1
a2_b1    -1     0
a2_b2     0    -1
a2_b3     1     1

Sum of squares and products for the hypothesis:
         A1:B1 A1:B2
A1:B1 5152.05 738.3
A1:B2  738.30 105.8

Sum of squares and products for error:
        A1:B1  A1:B2
A1:B1 3210.5 1334.4
A1:B2 1334.4  924.0

Multivariate Tests: A:B
                  Df test stat approx F num Df den Df     Pr(>F)
Pillai            1 0.7252156 22.43334      2     17 1.7039e-05
Wilks             1 0.2747844 22.43334      2     17 1.7039e-05
Hotelling-Lawley  1 2.6392162 22.43334      2     17 1.7039e-05
Roy               1 2.6392162 22.43334      2     17 1.7039e-05

------------------------------------------

Term: sex:A:B

  Response transformation matrix:
       A1:B1 A1:B2
a1_b1     1     0
a1_b2     0     1
a1_b3    -1    -1
a2_b1    -1     0
a2_b2     0    -1
a2_b3     1     1

Sum of squares and products for the hypothesis:
       A1:B1 A1:B2
A1:B1 26.45   2.3
A1:B2  2.30   0.2

Sum of squares and products for error:
        A1:B1  A1:B2
A1:B1 3210.5 1334.4
A1:B2 1334.4  924.0

Multivariate Tests: sex:A:B
                  Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0157232 0.1357821      2     17 0.87397
Wilks             1 0.9842768 0.1357821      2     17 0.87397
Hotelling-Lawley  1 0.0159744 0.1357821      2     17 0.87397
Roy               1 0.0159744 0.1357821      2     17 0.87397

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

                 SS num Df Error SS den Df        F    Pr(>F)
(Intercept) 194891      1   5743.2     18 610.8117 2.425e-15
sex           1810      1   5743.2     18   5.6716   0.02849
A              163      1   1733.6     18   1.6959   0.20925
sex:A            0      1   1733.6     18   0.0003   0.98536
B             1151      2    711.0     36  29.1292 2.990e-08
sex:B            8      2    711.0     36   0.1979   0.82134
A:B           1507      2    933.4     36  29.0532 3.078e-08
sex:A:B          8      2    933.4     36   0.1565   0.85568


Mauchly Tests for Sphericity

         Test statistic   p-value
B              0.57532 0.0091036
sex:B          0.57532 0.0091036
A:B            0.45375 0.0012104
sex:A:B        0.45375 0.0012104


Greenhouse-Geisser and Huynh-Feldt Corrections
  for Departure from Sphericity

          GG eps Pr(>F[GG])
B       0.70191  2.143e-06
sex:B   0.70191     0.7427
A:B     0.64672  4.838e-06
sex:A:B 0.64672     0.7599

          HF eps Pr(>F[HF])
B       0.74332  1.181e-06
sex:B   0.74332     0.7560
A:B     0.67565  3.191e-06
sex:A:B 0.67565     0.7702
List of 13
  $ SSP       :List of 8
   ..$ (Intercept): num [1, 1] 1169345
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1, 1] 10858
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1, 1] 980
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1, 1] 0.2
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:2, 1:2] 3618 3443 3443 3277
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:2, 1:2] 26.4 23 23 20
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:2, 1:2] 5152 738 738 106
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:2, 1:2] 26.4 2.3 2.3 0.2
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ SSPE      :List of 8
   ..$ (Intercept): num [1, 1] 34459
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1, 1] 34459
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "(Intercept)"
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1, 1] 10402
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1, 1] 10402
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr "A1"
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:2, 1:2] 2304 1397 1397 1225
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:2, 1:2] 2304 1397 1397 1225
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "B1" "B2"
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:2, 1:2] 3210 1334 1334 924
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:2, 1:2] 3210 1334 1334 924
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ P         :List of 8
   ..$ (Intercept): num [1:6, 1] 1 1 1 1 1 1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "(Intercept)"
   ..$ sex        : num [1:6, 1] 1 1 1 1 1 1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "(Intercept)"
   ..$ A          : num [1:6, 1] 1 1 1 -1 -1 -1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "A1"
   ..$ sex:A      : num [1:6, 1] 1 1 1 -1 -1 -1
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr "A1"
   ..$ B          : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ sex:B      : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "B1" "B2"
   ..$ A:B        : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
   ..$ sex:A:B    : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
   .. ..- attr(*, "dimnames")=List of 2
   .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
   .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
  $ df        : Named num [1:8] 1 1 1 1 1 1 1 1
   ..- attr(*, "names")= chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
  $ error.df  : int 18
  $ terms     : chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
  $ repeated  : logi TRUE
  $ type      : chr "III"
  $ test      : chr "Wilks"
  $ idata     :'data.frame':     6 obs. of  2 variables:
   ..$ A: Factor w/ 2 levels "1","2": 1 1 1 2 2 2
   .. ..- attr(*, "contrasts")= chr "contr.sum"
   ..$ B: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3
   .. ..- attr(*, "contrasts")= chr "contr.sum"
  $ idesign   :Class 'formula' length 2 ~A * B
   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
  $ icontrasts: chr [1:2] "contr.sum" "contr.poly"
  $ imatrix   : NULL
  - attr(*, "class")= chr "Anova.mlm"
 > result$`Pr(>F)`
NULL
 > result[[4]]
(Intercept)         sex           A       sex:A           B       sex:B
           1           1           1           1           1           1
         A:B     sex:A:B
           1           1
 >

Op 23/08/2010 22:23, Johan Steen schreef:
> Thanks for your replies,
>
> but unfortunately none of them seem to help.
> I do get p-values in the output, but can't seem to locate them anywhere
> in these objects via the str() function. I also get very different
> output using str() than you obtained from the lm help page
>
> Here's my output:
>
>  > A <- factor( rep(1:2,each=3) )
>  > B <- factor( rep(1:3,times=2) )
>  > idata <- data.frame(A,B)
>  > idata
> A B
> 1 1 1
> 2 1 2
> 3 1 3
> 4 2 1
> 5 2 2
> 6 2 3
>  >
>  > fit <- lm( cbind(a1_b1,a1_b2,a1_b3,a2_b1,a2_b2,a2_b3) ~ sex,
> data=Data.wide)
>  > result <- Anova(fit, type="III", test="Wilks", idata=idata,
> idesign=~A*B)
>  > result
>
> Type III Repeated Measures MANOVA Tests: Wilks test statistic
> Df test stat approx F num Df den Df Pr(>F)
> (Intercept) 1 0.02863 610.81 1 18 2.425e-15
> sex 1 0.76040 5.67 1 18 0.02849
> A 1 0.91390 1.70 1 18 0.20925
> sex:A 1 0.99998 0.00 1 18 0.98536
> B 1 0.26946 23.05 2 17 1.443e-05
> sex:B 1 0.98394 0.14 2 17 0.87140
> A:B 1 0.27478 22.43 2 17 1.704e-05
> sex:A:B 1 0.98428 0.14 2 17 0.87397
>  > summary(result)
>
> Type III Repeated Measures MANOVA Tests:
>
> ------------------------------------------
>
> Term: (Intercept)
>
> Response transformation matrix:
> (Intercept)
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 1
> a2_b2 1
> a2_b3 1
>
> Sum of squares and products for the hypothesis:
> (Intercept)
> (Intercept) 1169345
>
> Sum of squares and products for error:
> (Intercept)
> (Intercept) 34459.4
>
> Multivariate Tests: (Intercept)
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.97137 610.8117 1 18 2.425e-15
> Wilks 1 0.02863 610.8117 1 18 2.425e-15
> Hotelling-Lawley 1 33.93399 610.8117 1 18 2.425e-15
> Roy 1 33.93399 610.8117 1 18 2.425e-15
>
> ------------------------------------------
>
> Term: sex
>
> Response transformation matrix:
> (Intercept)
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 1
> a2_b2 1
> a2_b3 1
>
> Sum of squares and products for the hypothesis:
> (Intercept)
> (Intercept) 10857.8
>
> Sum of squares and products for error:
> (Intercept)
> (Intercept) 34459.4
>
> Multivariate Tests: sex
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.2395956 5.671614 1 18 0.028486
> Wilks 1 0.7604044 5.671614 1 18 0.028486
> Hotelling-Lawley 1 0.3150896 5.671614 1 18 0.028486
> Roy 1 0.3150896 5.671614 1 18 0.028486
>
> ------------------------------------------
>
> Term: A
>
> Response transformation matrix:
> A1
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 -1
> a2_b2 -1
> a2_b3 -1
>
> Sum of squares and products for the hypothesis:
> A1
> A1 980
>
> Sum of squares and products for error:
> A1
> A1 10401.8
>
> Multivariate Tests: A
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0861024 1.695860 1 18 0.20925
> Wilks 1 0.9138976 1.695860 1 18 0.20925
> Hotelling-Lawley 1 0.0942145 1.695860 1 18 0.20925
> Roy 1 0.0942145 1.695860 1 18 0.20925
>
> ------------------------------------------
>
> Term: sex:A
>
> Response transformation matrix:
> A1
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 -1
> a2_b2 -1
> a2_b3 -1
>
> Sum of squares and products for the hypothesis:
> A1
> A1 0.2
>
> Sum of squares and products for error:
> A1
> A1 10401.8
>
> Multivariate Tests: sex:A
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0000192 0.0003460939 1 18 0.98536
> Wilks 1 0.9999808 0.0003460939 1 18 0.98536
> Hotelling-Lawley 1 0.0000192 0.0003460939 1 18 0.98536
> Roy 1 0.0000192 0.0003460939 1 18 0.98536
>
> ------------------------------------------
>
> Term: B
>
> Response transformation matrix:
> B1 B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 1 0
> a2_b2 0 1
> a2_b3 -1 -1
>
> Sum of squares and products for the hypothesis:
> B1 B2
> B1 3618.05 3443.2
> B2 3443.20 3276.8
>
> Sum of squares and products for error:
> B1 B2
> B1 2304.5 1396.8
> B2 1396.8 1225.2
>
> Multivariate Tests: B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.730544 23.04504 2 17 1.4426e-05
> Wilks 1 0.269456 23.04504 2 17 1.4426e-05
> Hotelling-Lawley 1 2.711181 23.04504 2 17 1.4426e-05
> Roy 1 2.711181 23.04504 2 17 1.4426e-05
>
> ------------------------------------------
>
> Term: sex:B
>
> Response transformation matrix:
> B1 B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 1 0
> a2_b2 0 1
> a2_b3 -1 -1
>
> Sum of squares and products for the hypothesis:
> B1 B2
> B1 26.45 23
> B2 23.00 20
>
> Sum of squares and products for error:
> B1 B2
> B1 2304.5 1396.8
> B2 1396.8 1225.2
>
> Multivariate Tests: sex:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0160644 0.1387764 2 17 0.8714
> Wilks 1 0.9839356 0.1387764 2 17 0.8714
> Hotelling-Lawley 1 0.0163266 0.1387764 2 17 0.8714
> Roy 1 0.0163266 0.1387764 2 17 0.8714
>
> ------------------------------------------
>
> Term: A:B
>
> Response transformation matrix:
> A1:B1 A1:B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 -1 0
> a2_b2 0 -1
> a2_b3 1 1
>
> Sum of squares and products for the hypothesis:
> A1:B1 A1:B2
> A1:B1 5152.05 738.3
> A1:B2 738.30 105.8
>
> Sum of squares and products for error:
> A1:B1 A1:B2
> A1:B1 3210.5 1334.4
> A1:B2 1334.4 924.0
>
> Multivariate Tests: A:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.7252156 22.43334 2 17 1.7039e-05
> Wilks 1 0.2747844 22.43334 2 17 1.7039e-05
> Hotelling-Lawley 1 2.6392162 22.43334 2 17 1.7039e-05
> Roy 1 2.6392162 22.43334 2 17 1.7039e-05
>
> ------------------------------------------
>
> Term: sex:A:B
>
> Response transformation matrix:
> A1:B1 A1:B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 -1 0
> a2_b2 0 -1
> a2_b3 1 1
>
> Sum of squares and products for the hypothesis:
> A1:B1 A1:B2
> A1:B1 26.45 2.3
> A1:B2 2.30 0.2
>
> Sum of squares and products for error:
> A1:B1 A1:B2
> A1:B1 3210.5 1334.4
> A1:B2 1334.4 924.0
>
> Multivariate Tests: sex:A:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0157232 0.1357821 2 17 0.87397
> Wilks 1 0.9842768 0.1357821 2 17 0.87397
> Hotelling-Lawley 1 0.0159744 0.1357821 2 17 0.87397
> Roy 1 0.0159744 0.1357821 2 17 0.87397
>
> Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
>
> SS num Df Error SS den Df F Pr(>F)
> (Intercept) 194891 1 5743.2 18 610.8117 2.425e-15
> sex 1810 1 5743.2 18 5.6716 0.02849
> A 163 1 1733.6 18 1.6959 0.20925
> sex:A 0 1 1733.6 18 0.0003 0.98536
> B 1151 2 711.0 36 29.1292 2.990e-08
> sex:B 8 2 711.0 36 0.1979 0.82134
> A:B 1507 2 933.4 36 29.0532 3.078e-08
> sex:A:B 8 2 933.4 36 0.1565 0.85568
>
>
> Mauchly Tests for Sphericity
>
> Test statistic p-value
> B 0.57532 0.0091036
> sex:B 0.57532 0.0091036
> A:B 0.45375 0.0012104
> sex:A:B 0.45375 0.0012104
>
>
> Greenhouse-Geisser and Huynh-Feldt Corrections
> for Departure from Sphericity
>
> GG eps Pr(>F[GG])
> B 0.70191 2.143e-06
> sex:B 0.70191 0.7427
> A:B 0.64672 4.838e-06
> sex:A:B 0.64672 0.7599
>
> HF eps Pr(>F[HF])
> B 0.74332 1.181e-06
> sex:B 0.74332 0.7560
> A:B 0.67565 3.191e-06
> sex:A:B 0.67565 0.7702
>  > str(result)
> List of 13
> $ SSP :List of 8
> ..$ (Intercept): num [1, 1] 1169345
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1, 1] 10858
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1, 1] 980
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1, 1] 0.2
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ B : num [1:2, 1:2] 3618 3443 3443 3277
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:2, 1:2] 26.4 23 23 20
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:2, 1:2] 5152 738 738 106
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:2, 1:2] 26.4 2.3 2.3 0.2
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ SSPE :List of 8
> ..$ (Intercept): num [1, 1] 34459
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1, 1] 34459
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1, 1] 10402
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1, 1] 10402
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ B : num [1:2, 1:2] 2304 1397 1397 1225
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:2, 1:2] 2304 1397 1397 1225
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:2, 1:2] 3210 1334 1334 924
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:2, 1:2] 3210 1334 1334 924
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ P :List of 8
> ..$ (Intercept): num [1:6, 1] 1 1 1 1 1 1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1:6, 1] 1 1 1 1 1 1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1:6, 1] 1 1 1 -1 -1 -1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1:6, 1] 1 1 1 -1 -1 -1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "A1"
> ..$ B : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ df : Named num [1:8] 1 1 1 1 1 1 1 1
> ..- attr(*, "names")= chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
> $ error.df : int 18
> $ terms : chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
> $ repeated : logi TRUE
> $ type : chr "III"
> $ test : chr "Wilks"
> $ idata :'data.frame': 6 obs. of 2 variables:
> ..$ A: Factor w/ 2 levels "1","2": 1 1 1 2 2 2
> .. ..- attr(*, "contrasts")= chr "contr.sum"
> ..$ B: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3
> .. ..- attr(*, "contrasts")= chr "contr.sum"
> $ idesign :Class 'formula' length 2 ~A * B
> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
> $ icontrasts: chr [1:2] "contr.sum" "contr.poly"
> $ imatrix : NULL
> - attr(*, "class")= chr "Anova.mlm"
>  > str(summary(result))
>
> Type III Repeated Measures MANOVA Tests:
>
> ------------------------------------------
>
> Term: (Intercept)
>
> Response transformation matrix:
> (Intercept)
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 1
> a2_b2 1
> a2_b3 1
>
> Sum of squares and products for the hypothesis:
> (Intercept)
> (Intercept) 1169345
>
> Sum of squares and products for error:
> (Intercept)
> (Intercept) 34459.4
>
> Multivariate Tests: (Intercept)
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.97137 610.8117 1 18 2.425e-15
> Wilks 1 0.02863 610.8117 1 18 2.425e-15
> Hotelling-Lawley 1 33.93399 610.8117 1 18 2.425e-15
> Roy 1 33.93399 610.8117 1 18 2.425e-15
>
> ------------------------------------------
>
> Term: sex
>
> Response transformation matrix:
> (Intercept)
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 1
> a2_b2 1
> a2_b3 1
>
> Sum of squares and products for the hypothesis:
> (Intercept)
> (Intercept) 10857.8
>
> Sum of squares and products for error:
> (Intercept)
> (Intercept) 34459.4
>
> Multivariate Tests: sex
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.2395956 5.671614 1 18 0.028486
> Wilks 1 0.7604044 5.671614 1 18 0.028486
> Hotelling-Lawley 1 0.3150896 5.671614 1 18 0.028486
> Roy 1 0.3150896 5.671614 1 18 0.028486
>
> ------------------------------------------
>
> Term: A
>
> Response transformation matrix:
> A1
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 -1
> a2_b2 -1
> a2_b3 -1
>
> Sum of squares and products for the hypothesis:
> A1
> A1 980
>
> Sum of squares and products for error:
> A1
> A1 10401.8
>
> Multivariate Tests: A
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0861024 1.695860 1 18 0.20925
> Wilks 1 0.9138976 1.695860 1 18 0.20925
> Hotelling-Lawley 1 0.0942145 1.695860 1 18 0.20925
> Roy 1 0.0942145 1.695860 1 18 0.20925
>
> ------------------------------------------
>
> Term: sex:A
>
> Response transformation matrix:
> A1
> a1_b1 1
> a1_b2 1
> a1_b3 1
> a2_b1 -1
> a2_b2 -1
> a2_b3 -1
>
> Sum of squares and products for the hypothesis:
> A1
> A1 0.2
>
> Sum of squares and products for error:
> A1
> A1 10401.8
>
> Multivariate Tests: sex:A
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0000192 0.0003460939 1 18 0.98536
> Wilks 1 0.9999808 0.0003460939 1 18 0.98536
> Hotelling-Lawley 1 0.0000192 0.0003460939 1 18 0.98536
> Roy 1 0.0000192 0.0003460939 1 18 0.98536
>
> ------------------------------------------
>
> Term: B
>
> Response transformation matrix:
> B1 B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 1 0
> a2_b2 0 1
> a2_b3 -1 -1
>
> Sum of squares and products for the hypothesis:
> B1 B2
> B1 3618.05 3443.2
> B2 3443.20 3276.8
>
> Sum of squares and products for error:
> B1 B2
> B1 2304.5 1396.8
> B2 1396.8 1225.2
>
> Multivariate Tests: B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.730544 23.04504 2 17 1.4426e-05
> Wilks 1 0.269456 23.04504 2 17 1.4426e-05
> Hotelling-Lawley 1 2.711181 23.04504 2 17 1.4426e-05
> Roy 1 2.711181 23.04504 2 17 1.4426e-05
>
> ------------------------------------------
>
> Term: sex:B
>
> Response transformation matrix:
> B1 B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 1 0
> a2_b2 0 1
> a2_b3 -1 -1
>
> Sum of squares and products for the hypothesis:
> B1 B2
> B1 26.45 23
> B2 23.00 20
>
> Sum of squares and products for error:
> B1 B2
> B1 2304.5 1396.8
> B2 1396.8 1225.2
>
> Multivariate Tests: sex:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0160644 0.1387764 2 17 0.8714
> Wilks 1 0.9839356 0.1387764 2 17 0.8714
> Hotelling-Lawley 1 0.0163266 0.1387764 2 17 0.8714
> Roy 1 0.0163266 0.1387764 2 17 0.8714
>
> ------------------------------------------
>
> Term: A:B
>
> Response transformation matrix:
> A1:B1 A1:B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 -1 0
> a2_b2 0 -1
> a2_b3 1 1
>
> Sum of squares and products for the hypothesis:
> A1:B1 A1:B2
> A1:B1 5152.05 738.3
> A1:B2 738.30 105.8
>
> Sum of squares and products for error:
> A1:B1 A1:B2
> A1:B1 3210.5 1334.4
> A1:B2 1334.4 924.0
>
> Multivariate Tests: A:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.7252156 22.43334 2 17 1.7039e-05
> Wilks 1 0.2747844 22.43334 2 17 1.7039e-05
> Hotelling-Lawley 1 2.6392162 22.43334 2 17 1.7039e-05
> Roy 1 2.6392162 22.43334 2 17 1.7039e-05
>
> ------------------------------------------
>
> Term: sex:A:B
>
> Response transformation matrix:
> A1:B1 A1:B2
> a1_b1 1 0
> a1_b2 0 1
> a1_b3 -1 -1
> a2_b1 -1 0
> a2_b2 0 -1
> a2_b3 1 1
>
> Sum of squares and products for the hypothesis:
> A1:B1 A1:B2
> A1:B1 26.45 2.3
> A1:B2 2.30 0.2
>
> Sum of squares and products for error:
> A1:B1 A1:B2
> A1:B1 3210.5 1334.4
> A1:B2 1334.4 924.0
>
> Multivariate Tests: sex:A:B
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0157232 0.1357821 2 17 0.87397
> Wilks 1 0.9842768 0.1357821 2 17 0.87397
> Hotelling-Lawley 1 0.0159744 0.1357821 2 17 0.87397
> Roy 1 0.0159744 0.1357821 2 17 0.87397
>
> Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
>
> SS num Df Error SS den Df F Pr(>F)
> (Intercept) 194891 1 5743.2 18 610.8117 2.425e-15
> sex 1810 1 5743.2 18 5.6716 0.02849
> A 163 1 1733.6 18 1.6959 0.20925
> sex:A 0 1 1733.6 18 0.0003 0.98536
> B 1151 2 711.0 36 29.1292 2.990e-08
> sex:B 8 2 711.0 36 0.1979 0.82134
> A:B 1507 2 933.4 36 29.0532 3.078e-08
> sex:A:B 8 2 933.4 36 0.1565 0.85568
>
>
> Mauchly Tests for Sphericity
>
> Test statistic p-value
> B 0.57532 0.0091036
> sex:B 0.57532 0.0091036
> A:B 0.45375 0.0012104
> sex:A:B 0.45375 0.0012104
>
>
> Greenhouse-Geisser and Huynh-Feldt Corrections
> for Departure from Sphericity
>
> GG eps Pr(>F[GG])
> B 0.70191 2.143e-06
> sex:B 0.70191 0.7427
> A:B 0.64672 4.838e-06
> sex:A:B 0.64672 0.7599
>
> HF eps Pr(>F[HF])
> B 0.74332 1.181e-06
> sex:B 0.74332 0.7560
> A:B 0.67565 3.191e-06
> sex:A:B 0.67565 0.7702
> List of 13
> $ SSP :List of 8
> ..$ (Intercept): num [1, 1] 1169345
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1, 1] 10858
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1, 1] 980
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1, 1] 0.2
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ B : num [1:2, 1:2] 3618 3443 3443 3277
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:2, 1:2] 26.4 23 23 20
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:2, 1:2] 5152 738 738 106
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:2, 1:2] 26.4 2.3 2.3 0.2
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ SSPE :List of 8
> ..$ (Intercept): num [1, 1] 34459
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1, 1] 34459
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "(Intercept)"
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1, 1] 10402
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1, 1] 10402
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr "A1"
> .. .. ..$ : chr "A1"
> ..$ B : num [1:2, 1:2] 2304 1397 1397 1225
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:2, 1:2] 2304 1397 1397 1225
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "B1" "B2"
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:2, 1:2] 3210 1334 1334 924
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:2, 1:2] 3210 1334 1334 924
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ P :List of 8
> ..$ (Intercept): num [1:6, 1] 1 1 1 1 1 1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "(Intercept)"
> ..$ sex : num [1:6, 1] 1 1 1 1 1 1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "(Intercept)"
> ..$ A : num [1:6, 1] 1 1 1 -1 -1 -1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "A1"
> ..$ sex:A : num [1:6, 1] 1 1 1 -1 -1 -1
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr "A1"
> ..$ B : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ sex:B : num [1:6, 1:2] 1 0 -1 1 0 -1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "B1" "B2"
> ..$ A:B : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> ..$ sex:A:B : num [1:6, 1:2] 1 0 -1 -1 0 1 0 1 -1 0 ...
> .. ..- attr(*, "dimnames")=List of 2
> .. .. ..$ : chr [1:6] "a1_b1" "a1_b2" "a1_b3" "a2_b1" ...
> .. .. ..$ : chr [1:2] "A1:B1" "A1:B2"
> $ df : Named num [1:8] 1 1 1 1 1 1 1 1
> ..- attr(*, "names")= chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
> $ error.df : int 18
> $ terms : chr [1:8] "(Intercept)" "sex" "A" "sex:A" ...
> $ repeated : logi TRUE
> $ type : chr "III"
> $ test : chr "Wilks"
> $ idata :'data.frame': 6 obs. of 2 variables:
> ..$ A: Factor w/ 2 levels "1","2": 1 1 1 2 2 2
> .. ..- attr(*, "contrasts")= chr "contr.sum"
> ..$ B: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3
> .. ..- attr(*, "contrasts")= chr "contr.sum"
> $ idesign :Class 'formula' length 2 ~A * B
> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
> $ icontrasts: chr [1:2] "contr.sum" "contr.poly"
> $ imatrix : NULL
> - attr(*, "class")= chr "Anova.mlm"
>  > result$`Pr(>F)`
> NULL
>  > result[[4]]
> (Intercept) sex A sex:A B sex:B
> 1 1 1 1 1 1
> A:B sex:A:B
> 1 1
>  >
>
>
>
>
>
>
>
> Op 23/08/2010 21:56, Dennis Murphy schreef:
>> Hi:
>>
>> Look at
>> result$`Pr(>F)`
>>
>> (with backticks around Pr(>F) ), or more succinctly, result[[4]].
>>
>> HTH,
>> Dennis
>>
>> On Mon, Aug 23, 2010 at 12:01 PM, Johan Steen <johan.steen at gmail.com
>> <mailto:johan.steen at gmail.com>> wrote:
>>
>> Dear all,
>>
>> is there anyone who can help me extracting p-values from an Anova
>> object from the car library? I can't seem to locate the p-values
>> using str(result) or str(summary(result)) in the example below
>>
>> > A <- factor( rep(1:2,each=3) )
>> > B <- factor( rep(1:3,times=2) )
>> > idata <- data.frame(A,B)
>> > fit <- lm( cbind(a1_b1,a1_b2,a1_b3,a2_b1,a2_b2,a2_b3) ˜ sex,
>> data=Data.wide)
>> > result <- Anova(fit, type="III", test="Wilks", idata=idata,
>> idesign=˜A*B)
>>
>>
>> Any help would be much appreciated!
>>
>>
>> Many thanks,
>>
>> Johan
>>
>> ______________________________________________
>> R-help at r-project.org <mailto:R-help at r-project.org> mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>>



More information about the R-help mailing list