[R] msm and pmatrix

Peter Adamson peter.adamson at egu.york.ac.uk
Mon Sep 28 16:44:49 CEST 2009


Dear All,

I’m using R package ‘msm’ to fit a multi state model to infection history
data (counts of infections per month upto diagnosis of a particular disease
(sink state is state 11). The observed transitions are as follows:

    to
from     1     2     3     4     5     6     7     8    10    11
  1  35192  3806   899   233    46    11     3     0     1   534
  2   3801   790   249    69    15     6     2     1     0   134
  3    932   228    82    25    13     3     0     0     0    46
  4    236    59    33     7     4     6     0     0     0    14
  5     51    21     5     3     2     0     0     0     0     7
  6     15     7     3     1     2     0     0     0     0     1
  7      5     1     1     1     0     0     0     0     0     0
  8      1     0     0     0     0     0     0     0     0     0
  10     0     1     0     0     0     0     0     0     0     0

A simple multi-state model returns the following intensity matrix:

Maximum likelihood estimates: 
Transition intensity matrix  
 
   1                         2                         3                        
4                            5                          
1  -0.1359 (-0.1395,-0.1323) 0.09346 (0.09053,0.09647) 0.02207
(0.02068,0.02357) 0.005721 (0.005032,0.006505) 0.00113 (0.000846,0.001508)
2  0.7501 (0.7267,0.7744)    -0.8441 (-0.8698,-0.8192) 0.04914
(0.0434,0.05564)  0.01362 (0.01076,0.01724)    0.00296 (0.001785,0.00491) 
3  0.7013 (0.6577,0.7478)    0.1716 (0.1507,0.1953)    -0.9383
(-0.9919,-0.8876) 0.01881 (0.01271,0.02784)    0.009782 (0.00568,0.01685) 
4  0.6574 (0.5786,0.7468)    0.1643 (0.1273,0.2121)    0.09192
(0.06535,0.1293)  -0.9805 (-1.088,-0.8832)     0.01114 (0.004182,0.02969) 
5  0.573 (0.4355,0.754)      0.236 (0.1538,0.3619)     0.05618
(0.02338,0.135)   0.03371 (0.01087,0.1045)     -0.9775 (-1.206,-0.7923)   
6  0.5172 (0.3118,0.858)     0.2414 (0.1151,0.5063)    0.1034
(0.03336,0.3207)   0.03448 (0.004857,0.2448)    0.06897 (0.01725,0.2758)   
7  0.625 (0.2601,1.502)      0.125 (0.01761,0.8874)    0.125
(0.01761,0.8874)    0.125 (0.01761,0.8874)       0                          
8  1 (0.1409,7.099)          0                         0                        
0                            0                          
9  0                         0                         0                        
0                            0                          
10 0                         1 (0.1409,7.099)          0                        
0                            0                          
11 0                         0                         0                        
0                            0                          
   6                               7                               8                            
9 10                             
1  0.0002701 (0.0001496,0.0004877) 7.366e-05 (2.376e-05,0.0002284) 0                            
0 2.455e-05 (3.459e-06,0.0001743)
2  0.001184 (0.000532,0.002636)    0.0003947 (9.872e-05,0.001578)  0.0001974
(2.78e-05,0.001401) 0 0                              
3  0.002257 (0.000728,0.006999)    0                               0                            
0 0                              
4  0.01671 (0.007509,0.0372)       0                               0                            
0 0                              
5  0                               0                               0                            
0 0                              
6  -1 (-1.439,-0.6949)             0                               0                            
0 0                              
7  0                               -1 (-2,-0.5001)                 0                            
0 0                              
8  0                               0                               -1
(-7.099,-0.1409)           0 0                              
9  0                               0                               0                            
0 0                              
10 0                               0                               0                            
0 -1 (-7.099,-0.1409)            
11 0                               0                               0                            
0 0                              
   11                       
1  0.01311 (0.01205,0.01427)
2  0.02645 (0.02233,0.03132)
3  0.03461 (0.02593,0.04621)
4  0.039 (0.0231,0.06585)   
5  0.07865 (0.0375,0.165)   
6  0.03448 (0.004857,0.2448)
7  0                        
8  0                        
9  0                        
10 0                        
11 0                        

-2 * log-likelihood:  64615.3

Which seems plausible, however, extracting the transition probabilities
using pmatriix (at t=1) gives:

           1          2           3           4            5            6           
7            8 9           10          11
1  0.9054478 0.06084246 0.014901608 0.003903849 0.0008367198 0.0002307900
5.369672e-05 4.980968e-06 0 1.457826e-05 0.013763524
2  0.4898012 0.45268021 0.025441967 0.006992325 0.0016078599 0.0006118591
1.747896e-04 7.991718e-05 0 4.985068e-06 0.022604880
3  0.4685205 0.09100784 0.398191689 0.008992288 0.0041922757 0.0010294227
3.004231e-05 7.912784e-06 0 4.738914e-06 0.028023291
4  0.4494462 0.08906915 0.041839161 0.377271676 0.0049279805 0.0063594591
2.894941e-05 7.698071e-06 0 4.517754e-06 0.031045171
5  0.4088771 0.11474581 0.028549682 0.014579984 0.3767917106 0.0002500166
3.271528e-05 1.025989e-05 0 4.065169e-06 0.056158646
6  0.3938167 0.11987666 0.046914352 0.015309409 0.0262985772 0.3681546246
3.286685e-05 1.065551e-05 0 3.851946e-06 0.029582335
7  0.4435616 0.07627917 0.055356803 0.048419818 0.0008348049 0.0005421964
3.679054e-01 6.373819e-06 0 4.415240e-06 0.007089359
8  0.5936997 0.02523856 0.006121399 0.001599064 0.0003354685 0.0000894876
2.163217e-05 3.678809e-01 0 6.206303e-06 0.005007576
9  0.0000000 0.00000000 0.000000000 0.000000000 0.0000000000 0.0000000000
0.000000e+00 0.000000e+00 1 0.000000e+00 0.000000000
10 0.2030169 0.40494037 0.011295022 0.003112745 0.0007045151 0.0002724443
8.168259e-05 3.858055e-05 0 3.678809e-01 0.008656808
11 0.0000000 0.00000000 0.000000000 0.000000000 0.0000000000 0.0000000000
0.000000e+00 0.000000e+00 0 0.000000e+00 1.000000000

I was expecting a zero where the intensity matrix is equal to zero. For
example, the probabilities of moving from 7,8 and 10 to state 11 should be
zero. Am I missing something? I hope someone can shed some light on why I am
getting 'odd' results?

Thanks, Peter

-- 
View this message in context: http://www.nabble.com/msm-and-pmatrix-tp25645397p25645397.html
Sent from the R help mailing list archive at Nabble.com.




More information about the R-help mailing list