[R] help with ols and contrast functions in Design library
Frank E Harrell Jr
f.harrell at vanderbilt.edu
Thu Nov 5 20:59:32 CET 2009
Timothy Clough wrote:
> Dear All,
>
> I'm trying to use the ols function in the Design library (version
> 2.1.1) of R to estimate parameters of a linear model, and then use the
> contrast function in the same library to test various contrasts.
>
> As a simple example, suppose I have three factors: feature (3
> levels), group (2 levels), and patient (3 levels). Patient is coded
> as a non-unique identifier and is therefore nested within group.
>
> response <- rnorm(length(example$LOG_ABUNDANCE), mean = 12)
> feature <- rep(c(1,2,3), 6)
> group <- c(rep(c(1,2),each=9))
> patient <- rep(rep(c(1,2,3), each=3),2)
>
> myData <- data.frame(patient=factor(patient), group=factor(group),
> feature=factor(feature), response=response)
>
> I use the ols command to fit the linear model, but I receive the
> following error.
>
> fit <- ols(response ~ feature*group + group/patient, myData)
>
> > fit <- ols(response ~ feature*group + group/patient, myData)
> Error in if (!length(fname) || !any(fname == zname)) { :
> missing value where TRUE/FALSE needed
Sorry, Design, and its replacement rms, do not support nested effects.
Also, any model that results in an NA as a parameter estimate will not
work properly in Design/rms.
Frank
>
> Because of this, I tried using a unique identifier for patient using
> the following command.
>
> myData$group.patient <- with(myData, group:patient)[drop=TRUE]
>
> Running the same model with this factor will correct the error, but
> leaves me with an 'NA' for one of the estimated model parameters.
>
> > fit2 <- ols(response ~ feature*group + group.patient, myData)
> > fit2
>
> Linear Regression Model
>
> ols(formula = response ~ feature * group + group.patient, data = myData)
>
> n Model L.R. d.f. R2 Sigma
> 18 4.659 10 0.2281 1.122
>
> Residuals:
> Min 1Q Median 3Q Max
> -1.1466 -0.5854 -0.2545 0.6834 1.4900
>
> Coefficients:
> Value Std. Error t Pr(>|t|)
> Intercept 12.7116 9.442e-01 1.346e+01 2.928e-06
> feature=2 -0.4795 1.370e+00 -3.500e-01 7.367e-01
> feature=3 -0.0948 1.389e+00 -6.828e-02 9.475e-01
> group=2 -0.7218 3.586e+15 -2.013e-16 1.000e+00
> group.patient=1:2 -1.1455 1.120e+00 -1.023e+00 3.405e-01
> group.patient=1:3 -0.5619 9.894e-01 -5.679e-01 5.879e-01
> group.patient=2:1 -0.1402 3.586e+15 -3.909e-17 1.000e+00
> group.patient=2:2 -0.1699 3.586e+15 -4.738e-17 1.000e+00
> group.patient=2:3 NA 1.438e+00 NA NA
> feature=2 * group=2 0.1224 1.669e+00 7.330e-02 9.436e-01
> feature=3 * group=2 -0.1970 3.586e+15 -5.494e-17 1.000e+00
>
>
> When I try to test a contrast based on this fit, the 'NA' apparently
> prevents the estimation of the contrast.
>
> > contrast(fit2, list(group='1', feature=levels(myData$feature),
> group.patient=levels(myData$group.patient)), list(group='2',
> feature=levels(myData$feature), group.patient=levels(myData
> $group.patient)), type="average")
> Contrast S.E. Lower Upper t Pr(>|t|)
> 1 NA 2.390489e+15 NA NA NA NA
>
> Error d.f.= 8
>
> Any suggestions?
>
> Sincerely,
> Tim Clough
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Frank E Harrell Jr Professor and Chair School of Medicine
Department of Biostatistics Vanderbilt University
More information about the R-help
mailing list